Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States; Image Analyst Software, 43 Nova Lane, Novato, CA 94945, United States.
Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States; Touro University California College of Pharmacy, 1310 Club Drive, Vallejo, CA 94592, United States.
Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1054-1065. doi: 10.1016/j.bbadis.2016.10.015. Epub 2016 Oct 20.
Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contributes to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of β-cells to glucose. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
分析代谢紊乱(包括 2 型糖尿病)的细胞机制,由于代谢网络中存在大量的反应和相互作用而变得复杂。通过适当的模块化进行代谢控制分析是简化和分析这些网络的强大方法。为了分析贴壁细胞培养物中 INS-1 832/13 胰岛β细胞模型的细胞能量代谢的控制,我们将我们的绝对线粒体膜电位(ΔψM)的显微镜测定法改编为荧光微孔板读数器格式,并将其与细胞呼吸测定法一起应用。在这些细胞中,ΔψM 对外界葡萄糖浓度的敏感反应驱动葡萄糖刺激的胰岛素分泌。我们使用代谢控制分析确定了产生这种敏感反应的控制特性。ΔψM 和呼吸之间的力通量关系用于计算ΔψM 对上游(葡萄糖氧化)和下游(质子漏和 ATP 周转率)过程的动力学响应。分析表明,由于ΔψM 下游的因素引起的葡萄糖氧化活性增加,导致葡萄糖诱导的ΔψM 超极化被放大。在高葡萄糖下,超极化的 ΔψM 几乎完全被葡萄糖氧化稳定,而质子漏也有助于低葡萄糖时 ΔψM 的稳态控制。这些发现表明,β 细胞能量调节中的正反馈环很强,质子漏在空腹状态下可能具有调节作用。对来自 2 型糖尿病的已发表病例的胰岛生物能学的分析表明,这种反馈的破坏可以解释β 细胞对葡萄糖的生物能反应受损。本文是一个题为“氧化应激和糖尿病/肥胖症及危重病谱疾病中的线粒体质量”的特刊的一部分-由 P. Hemachandra Reddy 编辑。