Suppr超能文献

AL-09 V免疫球蛋白轻链原纤维的固态核磁共振化学位移归属

Solid-state NMR chemical shift assignments for AL-09 V immunoglobulin light chain fibrils.

作者信息

Piehl Dennis W, Blancas-Mejía Luis M, Ramirez-Alvarado Marina, Rienstra Chad M

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.

出版信息

Biomol NMR Assign. 2017 Apr;11(1):45-50. doi: 10.1007/s12104-016-9718-3. Epub 2016 Oct 22.

Abstract

Light chain (AL) amyloidosis is a systemic disease characterized by the formation of immunoglobulin light-chain fibrils in critical organs of the body. The light-chain protein AL-09 presents one severe case of cardiac AL amyloidosis, which contains seven mutations in the variable domain (V) relative to its germline counterpart, κI O18/O8 V. Three of these mutations are non-conservative-Y87H, N34I, and K42Q-and previous work has shown that they are responsible for significantly reducing the protein's thermodynamic stability, allowing fibril formation to occur with fast kinetics and across a wide-range of pH conditions. Currently, however, there is extremely limited structural information available which explicitly describes the residues that are involved in supporting the misfolded fibril structure. Here, we assign the site-specific N and C chemical shifts of the rigid residues of AL-09 V fibrils by solid-state NMR, reporting on the regions of the protein involved in the fibril as well as the extent of secondary structure.

摘要

轻链(AL)淀粉样变性是一种全身性疾病,其特征是在身体的关键器官中形成免疫球蛋白轻链原纤维。轻链蛋白AL-09是心脏AL淀粉样变性的一个严重病例,相对于其种系对应物κI O18/O8 V,其可变区(V)含有七个突变。其中三个突变是非保守的——Y87H、N34I和K42Q——先前的研究表明,它们显著降低了蛋白质的热力学稳定性,使得原纤维形成具有快速动力学且能在广泛的pH条件下发生。然而,目前明确描述支持错误折叠原纤维结构的残基的结构信息极其有限。在这里,我们通过固态核磁共振确定了AL-09 V原纤维刚性残基的位点特异性N和C化学位移,报告了蛋白质中参与原纤维形成的区域以及二级结构的程度。

相似文献

1
Solid-state NMR chemical shift assignments for AL-09 V immunoglobulin light chain fibrils.
Biomol NMR Assign. 2017 Apr;11(1):45-50. doi: 10.1007/s12104-016-9718-3. Epub 2016 Oct 22.
2
Immunoglobulin Light Chains Form an Extensive and Highly Ordered Fibril Involving the N- and C-Termini.
ACS Omega. 2017 Feb 28;2(2):712-720. doi: 10.1021/acsomega.6b00494. Epub 2017 Feb 27.
4
Solid state NMR assignments of a human λ-III immunoglobulin light chain amyloid fibril.
Biomol NMR Assign. 2021 Apr;15(1):9-16. doi: 10.1007/s12104-020-09975-2. Epub 2020 Sep 18.
5
Differences in Protein Concentration Dependence for Nucleation and Elongation in Light Chain Amyloid Formation.
Biochemistry. 2017 Feb 7;56(5):757-766. doi: 10.1021/acs.biochem.6b01043. Epub 2017 Jan 24.
6
MAK33 antibody light chain amyloid fibrils are similar to oligomeric precursors.
PLoS One. 2017 Jul 26;12(7):e0181799. doi: 10.1371/journal.pone.0181799. eCollection 2017.
9
Heat-induced native dimerization prevents amyloid formation by variable domain from immunoglobulin light-chain REI.
FEBS J. 2017 Sep;284(18):3114-3127. doi: 10.1111/febs.14181. Epub 2017 Aug 13.

引用本文的文献

1
Re-Engineering Therapeutic Anti-Aβ Monoclonal Antibody to Target Amyloid Light Chain.
Int J Mol Sci. 2024 Jan 27;25(3):1593. doi: 10.3390/ijms25031593.
2
3
Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis.
Nat Commun. 2021 Feb 8;12(1):875. doi: 10.1038/s41467-021-21126-2.
4
Understanding Mesangial Pathobiology in AL-Amyloidosis and Monoclonal Ig Light Chain Deposition Disease.
Kidney Int Rep. 2020 Jul 21;5(11):1870-1893. doi: 10.1016/j.ekir.2020.07.013. eCollection 2020 Nov.
6
Sedimentation Yields Long-Term Stable Protein Samples as Shown by Solid-State NMR.
Front Mol Biosci. 2020 Feb 21;7:17. doi: 10.3389/fmolb.2020.00017. eCollection 2020.
7
The CDR1 and Other Regions of Immunoglobulin Light Chains are Hot Spots for Amyloid Aggregation.
Sci Rep. 2019 Feb 28;9(1):3123. doi: 10.1038/s41598-019-39781-3.
8
Macrophage-Mediated Phagocytosis and Dissolution of Amyloid-Like Fibrils in Mice, Monitored by Optical Imaging.
Am J Pathol. 2019 May;189(5):989-998. doi: 10.1016/j.ajpath.2019.01.011. Epub 2019 Feb 6.
9
Identification of two principal amyloid-driving segments in variable domains of Ig light chains in systemic light-chain amyloidosis.
J Biol Chem. 2018 Dec 21;293(51):19659-19671. doi: 10.1074/jbc.RA118.004142. Epub 2018 Oct 24.
10
Immunoglobulin light chain amyloid aggregation.
Chem Commun (Camb). 2018 Sep 20;54(76):10664-10674. doi: 10.1039/c8cc04396e.

本文引用的文献

1
Kinetic control in protein folding for light chain amyloidosis and the differential effects of somatic mutations.
J Mol Biol. 2014 Jan 23;426(2):347-61. doi: 10.1016/j.jmb.2013.10.016. Epub 2013 Oct 22.
2
Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.
J Biomol NMR. 2013 Jul;56(3):227-41. doi: 10.1007/s10858-013-9741-y. Epub 2013 Jun 2.
4
Amyloid formation in light chain amyloidosis.
Curr Top Med Chem. 2012;12(22):2523-33. doi: 10.2174/1568026611212220007.
7
Light chain amyloidosis - current findings and future prospects.
Curr Protein Pept Sci. 2009 Oct;10(5):500-508. doi: 10.2174/138920309789351949.
8
Altered dimer interface decreases stability in an amyloidogenic protein.
J Biol Chem. 2008 Jun 6;283(23):15853-60. doi: 10.1074/jbc.M705347200. Epub 2008 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验