Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 126 NIH, Bethesda, MD 20892-0520, USA.
J Biomol NMR. 2013 Jul;56(3):227-41. doi: 10.1007/s10858-013-9741-y. Epub 2013 Jun 2.
A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (ϕ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ(1) rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.
引入了一个名为 TALOS-N 的新程序,用于根据 NMR 化学位移预测蛋白质骨架扭转角。与它的前身 TALOS+ 相比,该程序更广泛地依赖于经过训练的人工神经网络的使用。在一组独立的蛋白质上进行验证表明,使用比以前更严格近两倍的接受标准,并且预测和晶体观察到的(ϕ,ψ)扭转角之间的均方根差约为 12°,可以预测更大的、≥90%的残基的骨架扭转角,错误率小于 ca 3.5%。TALOS-N 还报告了约 50%残基的侧链 χ(1) 构象异构体状态,与参考结构的一致性为 89%。该程序包括一个经过训练的神经网络,可根据残基序列和化学位移识别二级结构。