Suppr超能文献

使用人工神经网络从 NMR 化学位移预测蛋白质主链和侧链扭转角。

Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 126 NIH, Bethesda, MD 20892-0520, USA.

出版信息

J Biomol NMR. 2013 Jul;56(3):227-41. doi: 10.1007/s10858-013-9741-y. Epub 2013 Jun 2.

Abstract

A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (ϕ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ(1) rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

摘要

引入了一个名为 TALOS-N 的新程序,用于根据 NMR 化学位移预测蛋白质骨架扭转角。与它的前身 TALOS+ 相比,该程序更广泛地依赖于经过训练的人工神经网络的使用。在一组独立的蛋白质上进行验证表明,使用比以前更严格近两倍的接受标准,并且预测和晶体观察到的(ϕ,ψ)扭转角之间的均方根差约为 12°,可以预测更大的、≥90%的残基的骨架扭转角,错误率小于 ca 3.5%。TALOS-N 还报告了约 50%残基的侧链 χ(1) 构象异构体状态,与参考结构的一致性为 89%。该程序包括一个经过训练的神经网络,可根据残基序列和化学位移识别二级结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6588/3701756/f7253291056b/nihms476035f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验