Thiemann Andrea, Holsteyns Frank, Cairós Carlos, Mettin Robert
Christian Doppler Laboratory for Cavitation and Micro-Erosion, Drittes Physikalisches Institut, Georg-August Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
Lam Research AG, SEZ-Straße 1, 9500 Villach, Austria.
Ultrason Sonochem. 2017 Jan;34:663-676. doi: 10.1016/j.ultsonch.2016.06.013. Epub 2016 Jun 11.
The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter ("red region"), while such emissions are nearly absent close to the horn tip ("blue region"). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.
液相声化学反应与气泡动力学之间的详细联系仍未被充分了解。为了进一步阐明这个问题,我们在含有溶解的硫酸钠且氙气饱和的硫酸溶液中,于23kHz的声空化装置中对声致发光以及气泡的振荡、平移和形状进行成像。声致发光的颜色变化方式如下:在远离声喇叭发射器的地方(“红色区域”)能明显观察到来自激发态非挥发性钠原子的发射光,而在靠近喇叭尖端的地方(“蓝色区域”)这种发射光几乎不存在。高速图像揭示了不同气泡群体的动力学,这些气泡群体部分可与不同的发射区域联系起来。具体而言,我们在蓝色区域看到较小的强烈坍缩的球形气泡,而在红色区域占主导的是在坍缩过程中有液体射流的较大气泡。这种射流是由快速的气泡平移引起的,而快速气泡平移是超声场中声( Bjerknes)力的结果。用球形单气泡模型进行的数值模拟定量地再现了发射钠光的气泡的体积振荡和快速平移。此外,它们的间歇性停止可以用滞后参数范围内的多稳定性来解释。这些发现证实了气泡变形是导致显著的钠声致发光的原因这一假设。值得注意的是,观察到的由平移引起的射流似乎是一种将液体有效混合到坍缩气泡的加热气相中的机制,因此总体上可能会促进液相声化学。