Suppr超能文献

基因如何在迈向百岁人生的过程中调节衰老相关变化模式:纵向数据遗传分析中的生物人口统计学模型与方法

How Genes Modulate Patterns of Aging-Related Changes on the Way to 100: Biodemographic Models and Methods in Genetic Analyses of Longitudinal Data.

作者信息

Yashin Anatoliy I, Arbeev Konstantin G, Wu Deqing, Arbeeva Liubov, Kulminski Alexander, Kulminskaya Irina, Akushevich Igor, Ukraintseva Svetlana V

机构信息

Professor, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102E, Durham, NC 27705, USA. Tel.: (+1) 919-668-2713.

Sr. Research Scientist, Center for Population Health and Aging, Duke University, 2024 W. Main Street, Room A102F, Durham, NC 27705, USA. Tel.: (+1) 919-668-2707.

出版信息

N Am Actuar J. 2016;20(3):201-232. doi: 10.1080/10920277.2016.1178588. Epub 2016 Jun 22.

Abstract

BACKGROUND AND OBJECTIVE

To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues.

DATA AND METHODS

We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging and on dynamic interaction between aging and longevity. We investigated properties of genes related to selected variants and their roles in signaling and metabolic pathways.

RESULTS

We showed that the use of different QC procedures results in different sets of genetic variants associated with life span. We selected 24 genetic variants negatively associated with life span. We showed that the joint analyses of genetic data at the time of bio-specimen collection and follow up data substantially improved significance of associations of selected 24 SNPs with life span. We also showed that aging related changes in physiological variables and in hidden biomarkers of aging differ for the groups of carriers and non-carriers of selected variants.

CONCLUSIONS

. The results of these analyses demonstrated benefits of using biodemographic models and methods in genetic association studies of these traits. Our findings showed that the absence of a large number of genetic variants with deleterious effects may make substantial contribution to exceptional longevity. These effects are dynamically mediated by a number of physiological variables and hidden biomarkers of aging. The results of these research demonstrated benefits of using integrative statistical models of mortality risks in genetic studies of human aging and longevity.

摘要

背景与目的

为阐明人类衰老和长寿特征的遗传调控机制,已开展了多项针对这些特征的全基因组关联研究(GWAS)。然而,这些分析结果未达研究人员预期。多数检测到的遗传关联未达到全基因组水平的统计学显著性,且在独立人群研究中缺乏重复性。该研究领域进展缓慢的原因包括数据分析中使用的统计方法效率低下、衰老和长寿相关特征的遗传异质性、基因变异对这些特征可能存在的多效性(如年龄依赖性)影响、对(i)基因异质性队列中死亡率选择的影响、(ii)外部因素以及所研究人群中个体遗传背景差异的低估,以及未能充分考虑上述因素的概念性生物学框架的薄弱性。已开展研究的另一个局限性在于,它们未充分认识到纵向数据的潜力,而纵向数据有助于评估在生命过程中生理变量和其他生物标志物如何介导基因对寿命的影响。本文旨在解决这些问题。

数据与方法

我们使用来自原始弗雷明汉心脏研究队列的不同子集数据(对应不同质量控制程序)进行了人类寿命的GWAS,并使用选定基因变异的一个子集进行进一步分析。我们通过模拟研究表明,合并数据的方法可提高GWAS的质量。我们使用弗雷明汉心脏研究纵向数据比较选定基因变异携带者和非携带者生理变量的平均年龄轨迹。我们使用人类死亡率和衰老的随机过程模型来研究基因对衰老隐藏生物标志物以及衰老与长寿之间动态相互作用的影响。我们研究了与选定变异相关的基因特性及其在信号传导和代谢途径中的作用。

结果

我们表明,使用不同的质量控制程序会导致与寿命相关的不同基因变异集。我们选择了24个与寿命呈负相关的基因变异。我们表明,在生物样本采集时对遗传数据与后续数据进行联合分析,显著提高了选定的24个单核苷酸多态性(SNP)与寿命关联的显著性。我们还表明,选定变异的携带者和非携带者组在生理变量和衰老隐藏生物标志物方面与衰老相关的变化存在差异。

结论

这些分析结果证明了在这些特征的遗传关联研究中使用生物人口统计学模型和方法的益处。我们的研究结果表明,缺乏大量具有有害影响的基因变异可能对超长寿命有重大贡献。这些影响由多种生理变量和衰老隐藏生物标志物动态介导。这些研究结果证明了在人类衰老和长寿遗传研究中使用死亡率风险综合统计模型的益处。

相似文献

2
Genetics of aging, health, and survival: dynamic regulation of human longevity related traits.
Front Genet. 2015 Apr 13;6:122. doi: 10.3389/fgene.2015.00122. eCollection 2015.
3
How genes influence life span: the biodemography of human survival.
Rejuvenation Res. 2012 Aug;15(4):374-80. doi: 10.1089/rej.2011.1290. Epub 2012 May 18.
4
Genetic variation and human longevity.
Dan Med J. 2012 May;59(5):B4454.
6
How lifespan associated genes modulate aging changes: lessons from analysis of longitudinal data.
Front Genet. 2013 Jan 22;4:3. doi: 10.3389/fgene.2013.00003. eCollection 2013.
9
Polygenic effects of common single-nucleotide polymorphisms on life span: when association meets causality.
Rejuvenation Res. 2012 Aug;15(4):381-94. doi: 10.1089/rej.2011.1257. Epub 2012 Apr 25.

引用本文的文献

4
Arterial and Cardiac Remodeling Associated With Extra Weight Gain in an Isolated Abdominal Obesity Cohort.
Front Cardiovasc Med. 2021 Nov 5;8:771022. doi: 10.3389/fcvm.2021.771022. eCollection 2021.
5
Functional aging in health and heart failure: the COmPLETE Study.
BMC Cardiovasc Disord. 2019 Jul 30;19(1):180. doi: 10.1186/s12872-019-1164-6.
7
Optimal Versus Realized Trajectories of Physiological Dysregulation in Aging and Their Relation to Sex-Specific Mortality Risk.
Front Public Health. 2016 Jan 25;4:3. doi: 10.3389/fpubh.2016.00003. eCollection 2016.
9
Joint Analyses of Longitudinal and Time-to-Event Data in Research on Aging: Implications for Predicting Health and Survival.
Front Public Health. 2014 Nov 6;2:228. doi: 10.3389/fpubh.2014.00228. eCollection 2014.
10
How lifespan associated genes modulate aging changes: lessons from analysis of longitudinal data.
Front Genet. 2013 Jan 22;4:3. doi: 10.3389/fgene.2013.00003. eCollection 2013.

本文引用的文献

1
Genetics of aging, health, and survival: dynamic regulation of human longevity related traits.
Front Genet. 2015 Apr 13;6:122. doi: 10.3389/fgene.2015.00122. eCollection 2015.
2
GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy.
J Gerontol A Biol Sci Med Sci. 2015 Jan;70(1):110-8. doi: 10.1093/gerona/glu166. Epub 2014 Sep 8.
3
Sirtuins: guardians of mammalian healthspan.
Trends Genet. 2014 Jul;30(7):271-86. doi: 10.1016/j.tig.2014.04.007. Epub 2014 May 28.
4
Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus.
J Immunol. 2014 May 15;192(10):4492-6. doi: 10.4049/jimmunol.1303211. Epub 2014 Apr 16.
6
Role of anoctamins in cancer and apoptosis.
Philos Trans R Soc Lond B Biol Sci. 2014 Feb 3;369(1638):20130096. doi: 10.1098/rstb.2013.0096. Print 2014 Mar 19.
7
Functional Significance of CD57 Expression on Human NK Cells and Relevance to Disease.
Front Immunol. 2013 Dec 9;4:422. doi: 10.3389/fimmu.2013.00422.
8
Substantial health and economic returns from delayed aging may warrant a new focus for medical research.
Health Aff (Millwood). 2013 Oct;32(10):1698-705. doi: 10.1377/hlthaff.2013.0052.
9
How the quality of GWAS of human lifespan and health span can be improved.
Front Genet. 2013 Jun 28;4:125. doi: 10.3389/fgene.2013.00125. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验