Suppr超能文献

老年研究中纵向和生存时间数据的联合分析:对预测健康和生存的影响。

Joint Analyses of Longitudinal and Time-to-Event Data in Research on Aging: Implications for Predicting Health and Survival.

机构信息

Center for Population Health and Aging, Duke University , Durham, NC , USA.

出版信息

Front Public Health. 2014 Nov 6;2:228. doi: 10.3389/fpubh.2014.00228. eCollection 2014.

Abstract

Longitudinal data on aging, health, and longevity provide a wealth of information to investigate different aspects of the processes of aging and development of diseases leading to death. Statistical methods aimed at analyses of time-to-event data jointly with longitudinal measurements became known as the "joint models" (JM). An important point to consider in analyses of such data in the context of studies on aging, health, and longevity is how to incorporate knowledge and theories about mechanisms and regularities of aging-related changes that accumulate in the research field into respective analytic approaches. In the absence of specific observations of longitudinal dynamics of relevant biomarkers manifesting such mechanisms and regularities, traditional approaches have a rather limited utility to estimate respective parameters that can be meaningfully interpreted from the biological point of view. A conceptual analytic framework for these purposes, the stochastic process model of aging (SPM), has been recently developed in the biodemographic literature. It incorporates available knowledge about mechanisms of aging-related changes, which may be hidden in the individual longitudinal trajectories of physiological variables and this allows for analyzing their indirect impact on risks of diseases and death. Despite, essentially, serving similar purposes, JM and SPM developed in parallel in different disciplines with very limited cross-referencing. Although there were several publications separately reviewing these two approaches, there were no publications presenting both these approaches in some detail. Here, we overview both approaches jointly and provide some new modifications of SPM. We discuss the use of stochastic processes to capture biological variation and heterogeneity in longitudinal patterns and important and promising (but still largely underused) applications of JM and SPM to predictions of individual and population mortality and health-related outcomes.

摘要

纵向数据在衰老、健康和长寿方面提供了丰富的信息,可以用于研究衰老和疾病发展过程的不同方面,导致死亡。旨在联合分析时变数据和纵向测量的统计方法被称为“联合模型”(JM)。在衰老、健康和长寿研究背景下分析此类数据时,需要考虑的一个重要问题是如何将关于衰老相关变化机制和规律的知识和理论纳入到各自的分析方法中。在缺乏表现这些机制和规律的相关生物标志物纵向动态的具体观察的情况下,传统方法在从生物学角度解释各自的参数方面的实用性相当有限。为了实现这一目的,生物统计学文献中最近提出了一个概念性分析框架,即衰老的随机过程模型(SPM)。它整合了关于衰老相关变化机制的可用知识,这些知识可能隐藏在生理变量的个体纵向轨迹中,这使得可以分析它们对疾病和死亡风险的间接影响。尽管 JM 和 SPM 的目的基本相同,但它们是在不同学科中平行发展的,相互参考非常有限。尽管有几篇文献分别对这两种方法进行了综述,但没有一篇文献详细介绍这两种方法。在这里,我们联合综述了这两种方法,并对 SPM 进行了一些新的改进。我们讨论了使用随机过程来捕捉纵向模式中的生物变异性和异质性,以及 JM 和 SPM 在个体和人群死亡率和健康相关结果预测方面的重要和有前途(但仍未得到充分利用)的应用。

相似文献

1
Joint Analyses of Longitudinal and Time-to-Event Data in Research on Aging: Implications for Predicting Health and Survival.
Front Public Health. 2014 Nov 6;2:228. doi: 10.3389/fpubh.2014.00228. eCollection 2014.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
The quadratic hazard model for analyzing longitudinal data on aging, health, and the life span.
Phys Life Rev. 2012 Jun;9(2):177-88; discussion 195-7. doi: 10.1016/j.plrev.2012.05.002. Epub 2012 May 17.
7
Dynamics of biomarkers in relation to aging and mortality.
Mech Ageing Dev. 2016 Jun;156:42-54. doi: 10.1016/j.mad.2016.04.010. Epub 2016 Apr 29.
8
Stochastic model for analysis of longitudinal data on aging and mortality.
Math Biosci. 2007 Aug;208(2):538-51. doi: 10.1016/j.mbs.2006.11.006. Epub 2006 Dec 5.
10
Genetic model for longitudinal studies of aging, health, and longevity and its potential application to incomplete data.
J Theor Biol. 2009 May 7;258(1):103-11. doi: 10.1016/j.jtbi.2009.01.023. Epub 2009 Feb 4.

引用本文的文献

1
A Look at Primary and Secondary Prevention in the Elderly: The Two Sides of the Same Coin.
J Clin Med. 2024 Jul 25;13(15):4350. doi: 10.3390/jcm13154350.
2
Forecasting prevalence and mortality of Alzheimer's disease using the partitioning models.
Exp Gerontol. 2023 Apr;174:112133. doi: 10.1016/j.exger.2023.112133. Epub 2023 Mar 2.
3
Interpretable machine learning for high-dimensional trajectories of aging health.
PLoS Comput Biol. 2022 Jan 10;18(1):e1009746. doi: 10.1371/journal.pcbi.1009746. eCollection 2022 Jan.
4
An immune-based biomarker signature is associated with mortality in COVID-19 patients.
JCI Insight. 2021 Jan 11;6(1):144455. doi: 10.1172/jci.insight.144455.
5
Genetics of physiological dysregulation: findings from the long life family study using joint models.
Aging (Albany NY). 2020 Apr 1;12(7):5920-5947. doi: 10.18632/aging.102987.
6
The Alzheimer's Disease Exposome.
Alzheimers Dement. 2019 Sep;15(9):1123-1132. doi: 10.1016/j.jalz.2019.06.3914. Epub 2019 Sep 10.
9
stpm: an R package for stochastic process model.
BMC Bioinformatics. 2017 Feb 23;18(1):125. doi: 10.1186/s12859-017-1538-7.

本文引用的文献

3
Dynamic Optimal Strategy for Monitoring Disease Recurrence.
Sci China Math. 2012 Aug 1;55(8):1565-182. doi: 10.1007/s11425-012-4475-y.
4
Dynamic prediction of risk of death using history of cancer recurrences in joint frailty models.
Stat Med. 2013 Dec 30;32(30):5366-80. doi: 10.1002/sim.5980. Epub 2013 Sep 13.
6
Real-time individual predictions of prostate cancer recurrence using joint models.
Biometrics. 2013 Mar;69(1):206-13. doi: 10.1111/j.1541-0420.2012.01823.x. Epub 2013 Feb 4.
7
A novel statistical approach shows evidence for multi-system physiological dysregulation during aging.
Mech Ageing Dev. 2013 Mar;134(3-4):110-7. doi: 10.1016/j.mad.2013.01.004. Epub 2013 Jan 31.
8
How lifespan associated genes modulate aging changes: lessons from analysis of longitudinal data.
Front Genet. 2013 Jan 22;4:3. doi: 10.3389/fgene.2013.00003. eCollection 2013.
9
An overview of health forecasting.
Environ Health Prev Med. 2013 Jan;18(1):1-9. doi: 10.1007/s12199-012-0294-6. Epub 2012 Jul 28.
10
Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial.
Health Serv Outcomes Res Methodol. 2012 Jun;12(2-3):182-199. doi: 10.1007/s10742-012-0092-z. Epub 2012 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验