Suppr超能文献

从被动和主动病毒监测推断日本脑炎病毒的生态和进化动态

Inference of Japanese encephalitis virus ecological and evolutionary dynamics from passive and active virus surveillance.

作者信息

Pham Truc T, Meng Shengli, Sun Yan, Lv Wenli, Bahl Justin

机构信息

Center for Infectious Diseases, The University of Texas School of Public Health, Houston, TX, USA.

Wuhan Institute of Biological Products, Wuhan, China.

出版信息

Virus Evol. 2016 Apr 9;2(1):vew009. doi: 10.1093/ve/vew009. eCollection 2016 Jan.

Abstract

A comprehensive monitoring strategy is vital for tracking the spread of mosquito-borne Japanese encephalitis virus (JEV), the leading cause of viral encephalitis in Asia. Virus detection consists of passive surveillance of primarily humans and swine, and/or active surveillance in mosquitoes, which may be a valuable proxy in providing insights into ecological processes underlying the spread and persistence of JEV. However, it has not been well characterized whether passive surveillance alone can capture the circulating genetic diversity to make reasonable inferences. Here, we develop phylogenetic models to infer JEV host changes, spatial diffusion patterns, and evolutionary dynamics from data collected through active and passive surveillance. We evaluate the feasibility of using JEV sequence data collected from mosquitoes to estimate the migration histories of genotypes GI and GIII. We show that divergence times estimated from this dataset were comparable to estimates from all available data. Increasing the amount of data collected from active surveillance improved time of most recent common ancestor estimates and reduced uncertainty. Phylogenetic estimates using all available data and only mosquito data from active surveillance produced similar results, showing that GI epidemics were widespread and diffused significantly faster between regions than GIII. In contrast, GIII outbreaks were highly structured and unlinked suggesting localized, unsampled infectious sources. Our results show that active surveillance of mosquitoes can sufficiently capture circulating genetic diversity of JEV to confidently estimate spatial and evolutionary patterns. While surveillance of other hosts could contribute to more detailed disease tracking and evaluation, comprehensive JEV surveillance programs should include systematic surveillance in mosquitoes to infer the most complete patterns for epidemiology, and risk assessment.

摘要

全面的监测策略对于追踪蚊媒传播的日本脑炎病毒(JEV)的传播至关重要,该病毒是亚洲病毒性脑炎的主要病因。病毒检测包括对主要是人类和猪的被动监测,和/或对蚊子的主动监测,蚊子监测可能是了解JEV传播和持续存在的生态过程的宝贵替代方法。然而,单独的被动监测能否捕捉到循环的遗传多样性以做出合理推断,目前尚未得到充分描述。在此,我们开发系统发育模型,以从通过主动和被动监测收集的数据中推断JEV的宿主变化、空间扩散模式和进化动态。我们评估了使用从蚊子收集的JEV序列数据来估计基因型GI和GIII迁移历史的可行性。我们表明,从该数据集中估计的分歧时间与所有可用数据的估计值相当。增加从主动监测收集的数据量改善了最近共同祖先估计的时间并降低了不确定性。使用所有可用数据和仅来自主动监测的蚊子数据进行的系统发育估计产生了相似的结果,表明GI流行广泛,且在各地区之间的扩散速度明显快于GIII。相比之下GIII疫情具有高度的结构性且无关联,表明存在局部的、未采样的传染源。我们的结果表明,对蚊子的主动监测能够充分捕捉JEV循环的遗传多样性,从而可靠地估计空间和进化模式。虽然对其他宿主的监测有助于更详细的疾病追踪和评估,但全面的JEV监测计划应包括对蚊子的系统监测,以推断出最完整的流行病学模式和风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/635f/4989885/02784a485330/vew009f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验