Suppr超能文献

纳米孔基直流介电泳法在压力驱动流中分离纳米颗粒。

Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow.

机构信息

Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, CanadaN2L 3G1.

出版信息

Nanoscale. 2016 Dec 7;8(45):18945-18955. doi: 10.1039/c6nr06952e. Epub 2016 Oct 24.

Abstract

A novel DC-dielectrophoresis (DEP) method employing a pressure-driven flow for the continuous separation of micro/nano-particles is presented in this paper. To generate the DEP force, a small voltage difference is applied to produce a non-uniformity of the electric field across a microchannel via a larger orifice of several hundred microns on one side of the channel wall and a smaller orifice of several hundred nanometers on the opposite channel wall. The particles experience a DEP force when they move with the flow through the vicinity of the small orifice, where the strongest electrical field gradient exists. Experiments were conducted to demonstrate the separation of 1 μm and 3 μm polystyrene particles by size by adjusting the applied electrical potentials. In order to separate smaller nanoparticles, the electrical conductivity of the suspending solution is adjusted so that the polystyrene nanoparticles of a given size experience positive DEP while the polystyrene nanoparticles of another size experience negative DEP. Using this method, the separation of 51 nm and 140 nm nanoparticles and the separation of 140 nm and 500 nm nanoparticles were demonstrated. In comparison with the microfluidic DC-DEP methods reported in the literature which utilize hurdles or obstacles to induce the non-uniformity of an electric field, a pair of asymmetrical orifices on the channel side walls is used in this method to generate a strong electrical field gradient and has advantages such as capability of separating nanoparticles, and locally applied lower electrical voltages to minimize the Joule heating effect.

摘要

本文提出了一种新颖的直流介电泳(DEP)方法,该方法采用压力驱动的流动来连续分离微/纳粒子。为了产生 DEP 力,通过在通道壁的一侧上具有几百微米的较大孔口和在相对的通道壁上具有几百纳米的较小孔口,在微通道中施加小电压差以产生电场的非均匀性。当颗粒随着流动通过小孔附近移动时,它们会经历 DEP 力,在小孔附近存在最强的电场梯度。通过调整施加的电势,进行了实验以演示通过尺寸对 1μm 和 3μm 聚苯乙烯颗粒进行分离。为了分离更小的纳米颗粒,调整悬浮溶液的电导率,使得给定尺寸的聚苯乙烯纳米颗粒经历正 DEP,而另一种尺寸的聚苯乙烯纳米颗粒经历负 DEP。使用这种方法,证明了 51nm 和 140nm 纳米颗粒的分离以及 140nm 和 500nm 纳米颗粒的分离。与文献中报道的利用障碍或障碍物来诱导电场不均匀性的微流控 DC-DEP 方法相比,该方法在通道侧壁上使用一对不对称孔口来产生强电场梯度,具有分离纳米颗粒的能力,以及局部施加较低的电压以最小化焦耳加热效应等优点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验