Visual Perception Laboratory, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
Visual Perception Laboratory, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
Neuroimage. 2018 Jun;173:434-447. doi: 10.1016/j.neuroimage.2018.02.044. Epub 2018 Feb 27.
Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA.
多变量模式分析(MVPA)方法,如解码和表示相似性分析(RSA),在脑磁图(MEG)数据分析中越来越受欢迎。然而,对于用于描述诱发激活模式之间差异的特定不相似性度量的相对性能和特征知之甚少。在这里,我们使用多会话 MEG 数据集定性地描述了一系列不相似性度量,并定量地比较了它们在解码准确性方面的差异(用于解码)和表示不相似性矩阵的会话间可靠性方面的差异(用于 RSA)。我们测试了来自一系列分类器(线性判别分析 - LDA、支持向量机 - SVM、加权鲁棒距离 - WeiRD、高斯朴素贝叶斯 - GNB)和距离(欧几里得距离、皮尔逊相关系数)的不相似性度量。此外,我们评估了三个关键的处理选择:1)预处理(噪声归一化,去除模式均值),2)通过决策值加权解码准确性,3)在三种不同的分区方案中计算距离(非交叉验证、交叉验证、类内校正)。我们的结果得出了四个主要结论。首先,适当的多元噪声归一化大大提高了解码准确性和不相似性度量的可靠性。其次,LDA、SVM 和 WeiRD 产生了高的峰值解码准确性和几乎相同的时间过程。第三,虽然使用 RSA 的解码准确性的可靠性明显低于连续距离,但通过对解码准确性进行决策值加权,可以减轻这一缺点。第四,交叉验证的欧几里得距离提供了无偏的距离估计和高度可复制的表示不相似性矩阵。总体而言,我们强烈建议使用多元噪声归一化作为一般预处理步骤,推荐 LDA、SVM 和 WeiRD 作为解码的分类器,并突出交叉验证的欧几里得距离作为 RSA 的可靠和无偏的默认选择。