Solé-Casals Jordi, López-de-Ipiña Pena Karmele, Caiafa Cesar F
Data and Signal Processing Research Group, U Science Tech, University of Vic - Central University of Catalonia, Vic, Catalonia, Spain.
Systems Engineering and Automation Department, Universidad del País Vasco/Euskal Herriko Unibertsitatea, EleKin Research Group, Donostia, Spain.
PLoS One. 2016 Oct 25;11(10):e0165288. doi: 10.1371/journal.pone.0165288. eCollection 2016.
This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.
本文提出了一种新方法,用于对应用于随机变量之和的单调非线性映射进行盲反演。例如,在源分离和维纳系统反演问题中会出现此类随机变量混合的情况。我们所提出方法的重要性基于这样一个事实,即它允许将非线性部分(非线性补偿)的估计与线性部分(源分离矩阵或反卷积滤波器)的估计解耦,而线性部分的估计可以通过应用任何合适的线性算法来解决。我们新的非线性补偿算法,即最大熵(MaxEnt)算法,通过最大化观测值的熵来推广观测值高斯化的思想。我们基于非线性函数的多项式或神经网络参数化开发了算法的两个版本。我们给出了关于非线性函数和概率分布的一个充分条件,该条件为最大熵方法成功补偿失真提供了保证。通过大量的仿真,将最大熵算法与用于非线性映射盲逼近的现有算法进行了比较。实验表明,在许多重要情况下,例如当混合中变量数量较少时,最大熵算法能够成功补偿单调失真,在获得的信噪比方面优于其他方法。此外,除了其补偿非线性的能力外,最大熵算法非常稳健,即结果的变化很小。