Gundry Michael C, Brunetti Lorenzo, Lin Angelique, Mayle Allison E, Kitano Ayumi, Wagner Dimitrios, Hsu Joanne I, Hoegenauer Kevin A, Rooney Cliona M, Goodell Margaret A, Nakada Daisuke
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06156 Perugia, Italy.
Cell Rep. 2016 Oct 25;17(5):1453-1461. doi: 10.1016/j.celrep.2016.09.092.
Our understanding of the mechanisms that regulate hematopoietic stem/progenitor cells (HSPCs) has been advanced by the ability to genetically manipulate mice; however, germline modification is time consuming and expensive. Here, we describe fast, efficient, and cost-effective methods to directly modify the genomes of mouse and human HSPCs using the CRISPR/Cas9 system. Using plasmid and virus-free delivery of guide RNAs alone into Cas9-expressing HSPCs or Cas9-guide RNA ribonucleoprotein (RNP) complexes into wild-type cells, we have achieved extremely efficient gene disruption in primary HSPCs from mouse (>60%) and human (∼75%). These techniques enabled rapid evaluation of the functional effects of gene loss of Eed, Suz12, and DNMT3A. We also achieved homology-directed repair in primary human HSPCs (>20%). These methods will significantly expand applications for CRISPR/Cas9 technologies for studying normal and malignant hematopoiesis.
通过对小鼠进行基因操作的能力,我们对调节造血干细胞/祖细胞(HSPCs)的机制有了更深入的了解;然而,种系修饰既耗时又昂贵。在此,我们描述了使用CRISPR/Cas9系统直接修饰小鼠和人类HSPCs基因组的快速、高效且经济高效的方法。通过将单独的引导RNA以无质粒和无病毒的方式导入表达Cas9的HSPCs中,或将Cas9引导RNA核糖核蛋白(RNP)复合物导入野生型细胞中,我们在小鼠(>60%)和人类(约75%)的原代HSPCs中实现了极高效率的基因破坏。这些技术使得能够快速评估Eed、Suz12和DNMT3A基因缺失的功能效应。我们还在原代人类HSPCs中实现了同源定向修复(>20%)。这些方法将显著扩展CRISPR/Cas9技术在研究正常和恶性造血方面的应用。