Suppr超能文献

化学修饰的引导RNA增强了人类原代细胞中的CRISPR-Cas基因组编辑。

Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.

作者信息

Hendel Ayal, Bak Rasmus O, Clark Joseph T, Kennedy Andrew B, Ryan Daniel E, Roy Subhadeep, Steinfeld Israel, Lunstad Benjamin D, Kaiser Robert J, Wilkens Alec B, Bacchetta Rosa, Tsalenko Anya, Dellinger Douglas, Bruhn Laurakay, Porteus Matthew H

机构信息

Department of Pediatrics, Stanford University, Stanford, California, USA.

Agilent Research Laboratories, Santa Clara, California, USA.

出版信息

Nat Biotechnol. 2015 Sep;33(9):985-989. doi: 10.1038/nbt.3290. Epub 2015 Jun 29.

Abstract

CRISPR-Cas-mediated genome editing relies on guide RNAs that direct site-specific DNA cleavage facilitated by the Cas endonuclease. Here we report that chemical alterations to synthesized single guide RNAs (sgRNAs) enhance genome editing efficiency in human primary T cells and CD34(+) hematopoietic stem and progenitor cells. Co-delivering chemically modified sgRNAs with Cas9 mRNA or protein is an efficient RNA- or ribonucleoprotein (RNP)-based delivery method for the CRISPR-Cas system, without the toxicity associated with DNA delivery. This approach is a simple and effective way to streamline the development of genome editing with the potential to accelerate a wide array of biotechnological and therapeutic applications of the CRISPR-Cas technology.

摘要

CRISPR-Cas介导的基因组编辑依赖于引导RNA,其通过Cas核酸内切酶促进位点特异性DNA切割。我们在此报告,对合成的单向导RNA(sgRNA)进行化学修饰可提高人类原代T细胞和CD34(+)造血干细胞及祖细胞中的基因组编辑效率。将化学修饰的sgRNA与Cas9 mRNA或蛋白质共同递送,是一种基于RNA或核糖核蛋白(RNP)的高效CRISPR-Cas系统递送方法,且无DNA递送相关的毒性。这种方法是简化基因组编辑开发的简单有效方式,有可能加速CRISPR-Cas技术的广泛生物技术和治疗应用。

相似文献

1
Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
Nat Biotechnol. 2015 Sep;33(9):985-989. doi: 10.1038/nbt.3290. Epub 2015 Jun 29.
2
CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018.
3
Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
Genome. 2017 Jun;60(6):537-545. doi: 10.1139/gen-2016-0127. Epub 2017 Jan 26.
5
Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing.
Nat Commun. 2018 Jul 6;9(1):2641. doi: 10.1038/s41467-018-05073-z.
6
Guide RNA functional modules direct Cas9 activity and orthogonality.
Mol Cell. 2014 Oct 23;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. Epub 2014 Oct 16.
7
Recent advances in the CRISPR genome editing tool set.
Exp Mol Med. 2019 Nov 5;51(11):1-11. doi: 10.1038/s12276-019-0339-7.
8
Potential pitfalls of CRISPR/Cas9-mediated genome editing.
FEBS J. 2016 Apr;283(7):1218-31. doi: 10.1111/febs.13586. Epub 2015 Nov 27.
9
Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications.
Pediatr Endocrinol Rev. 2017 Jun;14(4):353-363. doi: 10.17458/per.vol14.2017.BTH.Therapeu.
10
CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
Methods Mol Biol. 2020;2166:331-342. doi: 10.1007/978-1-0716-0712-1_19.

引用本文的文献

1
Evidence that mitochondria in macrophages are destroyed by microautophagy.
Nat Commun. 2025 Aug 30;16(1):8123. doi: 10.1038/s41467-025-63531-x.
2
Chemical Modifications in Nucleic Acid Therapeutics.
Methods Mol Biol. 2025;2965:57-126. doi: 10.1007/978-1-0716-4742-4_3.
3
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
5
Off-target effects in CRISPR-Cas genome editing for human therapeutics: Progress and challenges.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102636. doi: 10.1016/j.omtn.2025.102636. eCollection 2025 Sep 9.
6
Recent applications, future perspectives, and limitations of the CRISPR-Cas system.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102634. doi: 10.1016/j.omtn.2025.102634. eCollection 2025 Sep 9.
9
GFP-on mouse model for interrogation of in vivo gene editing.
Nat Commun. 2025 Jul 31;16(1):7017. doi: 10.1038/s41467-025-61449-y.
10
CRISPR-Cas9 in the Tailoring of Genetically Engineered Animals.
Curr Issues Mol Biol. 2025 May 4;47(5):330. doi: 10.3390/cimb47050330.

本文引用的文献

1
Quantifying on- and off-target genome editing.
Trends Biotechnol. 2015 Feb;33(2):132-40. doi: 10.1016/j.tibtech.2014.12.001. Epub 2015 Jan 13.
2
Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9.
Cell Stem Cell. 2014 Nov 6;15(5):643-52. doi: 10.1016/j.stem.2014.10.004.
3
COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites.
Mol Ther Nucleic Acids. 2014 Dec 2;3(12):e214. doi: 10.1038/mtna.2014.64.
4
Phosphorothioates, essential components of therapeutic oligonucleotides.
Nucleic Acid Ther. 2014 Dec;24(6):374-87. doi: 10.1089/nat.2014.0506.
5
Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.
Cell. 2014 Oct 23;159(3):647-61. doi: 10.1016/j.cell.2014.09.029. Epub 2014 Oct 9.
6
Easy quantitative assessment of genome editing by sequence trace decomposition.
Nucleic Acids Res. 2014 Dec 16;42(22):e168. doi: 10.1093/nar/gku936. Epub 2014 Oct 9.
7
Programmable RNA recognition and cleavage by CRISPR/Cas9.
Nature. 2014 Dec 11;516(7530):263-6. doi: 10.1038/nature13769. Epub 2014 Sep 28.
9
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.
10
Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing.
Cell Rep. 2014 Apr 10;7(1):293-305. doi: 10.1016/j.celrep.2014.02.040. Epub 2014 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验