Suppr超能文献

miRNAs 对机体生长的调控作用。

Regulation of body growth by microRNAs.

机构信息

Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC Rm 1-3330, 10 Center Drive, MSC-1103, Bethesda, MD, 20892-1103, United States.

出版信息

Mol Cell Endocrinol. 2017 Nov 15;456:2-8. doi: 10.1016/j.mce.2016.10.024. Epub 2016 Oct 24.

Abstract

Regulation of body growth remains a fascinating and unresolved biological mystery. One key component of body growth is skeletal and longitudinal bone growth. Children grow taller because their bones grew longer, and the predominant driver of longitudinal bone growth is a cartilaginous structure found near the ends of long bone named the growth plate. Numerous recent studies have started to unveil the importance of microRNAs in regulation of growth plate functions, therefore contributing to regulation of linear growth. In addition to longitudinal growth, other organs in our body need to increase in size and cell number as we grow, and the regulation of organ growth involves both systemic factors like hormones; and other intrinsic mechanisms, which we are just beginning to understand. This review aims to summarize some recent important findings on how microRNAs are involved in both of these processes: the regulation of longitudinal bone growth, and the regulation of organs and overall body growth.

摘要

调控机体生长一直是一个引人入胜但尚未解决的生物学谜题。机体生长的一个关键组成部分是骨骼和长骨生长。儿童长高是因为他们的骨骼变长了,而长骨纵向生长的主要驱动因素是一种软骨结构,这种结构位于长骨末端附近,被称为生长板。最近的许多研究开始揭示 microRNAs 在调控生长板功能方面的重要性,因此有助于调控线性生长。除了纵向生长,我们身体的其他器官在生长过程中也需要增大体积和增加细胞数量,而器官生长的调控既涉及激素等全身性因素;也涉及我们刚刚开始理解的其他内在机制。本综述旨在总结 microRNAs 如何参与这两个过程的一些最新重要发现:长骨纵向生长的调控,以及器官和整体机体生长的调控。

相似文献

1
Regulation of body growth by microRNAs.
Mol Cell Endocrinol. 2017 Nov 15;456:2-8. doi: 10.1016/j.mce.2016.10.024. Epub 2016 Oct 24.
2
Fibronectin isoforms promote postnatal skeletal development.
Matrix Biol. 2024 Nov;133:86-102. doi: 10.1016/j.matbio.2024.08.002. Epub 2024 Aug 17.
3
Spatial and temporal regulation of GH-IGF-related gene expression in growth plate cartilage.
J Endocrinol. 2007 Jul;194(1):31-40. doi: 10.1677/JOE-07-0012.
4
The Actions of IGF-1 in the Growth Plate and Its Role in Postnatal Bone Elongation.
Curr Osteoporos Rep. 2020 Jun;18(3):210-227. doi: 10.1007/s11914-020-00570-x.
7
SOCS2 is the critical regulator of GH action in murine growth plate chondrogenesis.
J Bone Miner Res. 2012 May;27(5):1055-66. doi: 10.1002/jbmr.1544.
8
Regulatory mechanisms for the development of growth plate cartilage.
Cell Mol Life Sci. 2013 Nov;70(22):4213-21. doi: 10.1007/s00018-013-1346-9. Epub 2013 May 4.
9
Cell-cycle control and the cartilage growth plate.
J Cell Physiol. 2005 Jan;202(1):1-8. doi: 10.1002/jcp.20111.
10
Local regulation of growth plate cartilage.
Endocr Dev. 2011;21:12-22. doi: 10.1159/000328084. Epub 2011 Aug 22.

引用本文的文献

1
The role of pyroptosis in the occurrence and development of pregnancy-related diseases.
Front Immunol. 2024 Sep 16;15:1400977. doi: 10.3389/fimmu.2024.1400977. eCollection 2024.
2
3
Microstructure changes and miRNA-mRNA network in a developmental dysplasia of the hip rat model.
iScience. 2024 Mar 7;27(4):109449. doi: 10.1016/j.isci.2024.109449. eCollection 2024 Apr 19.
4
[miRNA-26a reduces vascular smooth muscle cell calcification by regulating connective tissue growth factor].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Sep 20;42(9):1303-1308. doi: 10.12122/j.issn.1673-4254.2022.09.05.
5
MicroRNA-223 downregulation promotes HBx-induced podocyte pyroptosis by targeting the NLRP3 inflammasome.
Arch Virol. 2022 Sep;167(9):1841-1854. doi: 10.1007/s00705-022-05499-3. Epub 2022 Jun 22.
7
Specific MicroRNAs Found in Extracellular Matrix Vesicles Regulate Proliferation and Differentiation in Growth Plate Chondrocytes.
Calcif Tissue Int. 2021 Oct;109(4):455-468. doi: 10.1007/s00223-021-00855-y. Epub 2021 May 5.
9
Home for a rest: stem cell niche of the postnatal growth plate.
J Endocrinol. 2020 Jul;246(1):R1-R11. doi: 10.1530/JOE-20-0045.

本文引用的文献

3
Regulation of body growth.
Curr Opin Pediatr. 2015 Aug;27(4):502-10. doi: 10.1097/MOP.0000000000000235.
4
Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature.
PLoS Genet. 2015 May 28;11(5):e1005238. doi: 10.1371/journal.pgen.1005238. eCollection 2015 May.
5
Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration.
Mol Endocrinol. 2015 Jun;29(6):921-32. doi: 10.1210/me.2015-1047. Epub 2015 Apr 13.
6
Regulation of IGF -1 signaling by microRNAs.
Front Genet. 2015 Jan 13;5:472. doi: 10.3389/fgene.2014.00472. eCollection 2014.
7
Evolutionary conservation and modulation of a juvenile growth-regulating genetic program.
J Mol Endocrinol. 2014 Apr 28;52(3):269-77. doi: 10.1530/JME-13-0263. Print 2014 Jun.
8
let-7 and miR-140 microRNAs coordinately regulate skeletal development.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3291-300. doi: 10.1073/pnas.1302797110. Epub 2013 Aug 12.
9
miR-200b and miR-429 function in mouse ovulation and are essential for female fertility.
Science. 2013 Jul 5;341(6141):71-3. doi: 10.1126/science.1237999. Epub 2013 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验