Baldwin Robert L, Rose George D
Department of Biochemistry, Stanford University Medical Center, Beckman Center, School of Medicine, Stanford, CA 94305-5307;
Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, MD 21218.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12462-12466. doi: 10.1073/pnas.1610541113. Epub 2016 Oct 17.
How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki-Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484-7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470-3473] for the number of waters in alkane hydration shells.
研究了疏水性(HY)如何驱动蛋白质折叠。1971年的野崎-田边测量HY的方法被改进,以气体作为溶质而非晶体,这使得该方法易于使用。发现烷烃比稀有气体的疏水性要强得多,这两种不同类型的HY分别被称为内在(稀有气体)和外在(烷烃)。稀有气体的HY值与溶剂可及表面积(ASA)成正比,而烷烃的HY值取决于特殊的水合壳层。早期的研究表明水合壳层产生了烷烃的水合能。本文给出的证据表明,烷烃向环己烷的转移能[沃尔芬登R,刘易斯CA,小袁Y,卡特CW,小(2015)美国国家科学院院刊112(24):7484 - 7488]测量了这些壳层的释放。烷烃壳层通过烷烃碳与水氧原子之间的范德华相互作用而重要地稳定下来。因此,稀有气体不能形成这种类型的壳层。范德华相互作用非常短(约皮秒)的寿命可能解释了为什么核磁共振检测烷烃水合壳层的努力失败了。形成或释放烷烃壳层的相反能量大小之间的紧密相似性证实了这些壳层在烷烃上的存在,并支持了考兹曼1959年提出的蛋白质折叠机制。给出了线性烷烃水合壳层的空间填充模型。该模型再现了约根森等人[约根森WL,高J,拉维莫汉C(1985)物理化学杂志89:3470 - 3473]关于烷烃水合壳层中水分子数量的n值。