Suppr超能文献

通过自适应光学扫描激光眼底镜测量的黄斑视锥细胞分布差异:从中央凹到周边的斜率变化比视锥细胞总数的差异更明显。

Distribution differences of macular cones measured by AOSLO: Variation in slope from fovea to periphery more pronounced than differences in total cones.

作者信息

Elsner Ann E, Chui Toco Y P, Feng Lei, Song Hong Xin, Papay Joel A, Burns Stephen A

机构信息

Indiana University School of Optometry, 800 E. Atwater Ave, Bloomington, IN 47405, United States.

出版信息

Vision Res. 2017 Mar;132:62-68. doi: 10.1016/j.visres.2016.06.015. Epub 2016 Nov 3.

Abstract

Large individual differences in cone densities occur even in healthy, young adults with low refractive error. We investigated whether cone density follows a simple model that some individuals have more cones, or whether individuals differ in both number and distribution of cones. We quantified cones in the eyes of 36 healthy young adults with low refractive error using a custom adaptive optics scanning laser ophthalmoscope. The average cone density in the temporal meridian was, for the mean±SD, 43,216±6039, 27,466±3496, 14,996±1563, and 12,207±1278cones/mm for 270, 630, 1480, and 2070μm from the foveal center. Cone densities at 630μm retinal eccentricity were uncorrelated to those at 2070μm, ruling out models with a constant or proportional relation of cone density to eccentricity. Subjects with high central macula cone densities had low peripheral cone densities. The cone density ratio (2070:630μm) was negatively correlated with cone density at 630μm, consistent with variations in the proportion of peripheral cones migrating towards the center. We modelled the total cones within a central radius of 7deg, using the temporal data and our published cone densities for temporal, nasal, superior, and inferior meridians. We computed an average of 221,000 cones. The coefficient of variation was 0.0767 for total cones, but higher for samples near the fovea. Individual differences occur both in total cones and other developmental factors related to cone distribution.

摘要

即使在屈光不正度数低的健康年轻成年人中,视锥细胞密度也存在很大的个体差异。我们研究了视锥细胞密度是否遵循一个简单的模型,即一些个体拥有更多的视锥细胞,或者个体在视锥细胞的数量和分布上是否存在差异。我们使用定制的自适应光学扫描激光检眼镜对36名屈光不正度数低的健康年轻成年人的眼睛中的视锥细胞进行了量化。在距中央凹中心270、630、1480和2070μm处,颞侧子午线的平均视锥细胞密度(均值±标准差)分别为43,216±6039、27,466±3496、14,996±1563和12,207±1278个视锥细胞/mm。视网膜偏心度为630μm处的视锥细胞密度与2070μm处的视锥细胞密度不相关,排除了视锥细胞密度与偏心度呈恒定或比例关系的模型。黄斑中心视锥细胞密度高的受试者外周视锥细胞密度低。视锥细胞密度比(2070:630μm)与630μm处的视锥细胞密度呈负相关,这与外周视锥细胞向中心迁移比例的变化一致。我们使用颞侧数据以及我们已发表的颞侧、鼻侧、上方和下方子午线的视锥细胞密度,对7度中心半径内的视锥细胞总数进行了建模。我们计算出平均视锥细胞数为221,000个。视锥细胞总数的变异系数为0.0767,但在中央凹附近的样本中更高。视锥细胞总数以及与视锥细胞分布相关的其他发育因素均存在个体差异。

相似文献

2
Variability in Human Cone Topography Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy.
Am J Ophthalmol. 2015 Aug;160(2):290-300.e1. doi: 10.1016/j.ajo.2015.04.034. Epub 2015 Apr 30.
3
Intersubject variability of foveal cone photoreceptor density in relation to eye length.
Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6858-67. doi: 10.1167/iovs.10-5499. Epub 2010 Aug 4.
4
In vivo assessment of foveal geometry and cone photoreceptor density and spacing in children.
Sci Rep. 2020 Jun 2;10(1):8942. doi: 10.1038/s41598-020-65645-2.
6
Variation of cone photoreceptor packing density with retinal eccentricity and age.
Invest Ophthalmol Vis Sci. 2011 Sep 21;52(10):7376-84. doi: 10.1167/iovs.11-7199. Print 2011 Sep.
7
Human foveal cone photoreceptor topography and its dependence on eye length.
Elife. 2019 Jul 26;8:e47148. doi: 10.7554/eLife.47148.
10
Distribution of mid-peripheral cones in emmetropic and myopic subjects using adaptive optics flood illumination camera.
Ophthalmic Physiol Opt. 2019 Mar;39(2):94-103. doi: 10.1111/opo.12604. Epub 2019 Jan 29.

引用本文的文献

1
C5 inhibitor avacincaptad pegol treatment for geographic atrophy: A comprehensive review.
Immunotherapy. 2024;16(12):779-790. doi: 10.1080/1750743X.2024.2368342. Epub 2024 Jul 29.
2
Modeling Human Macular Cone Photoreceptor Spatial Distribution.
Invest Ophthalmol Vis Sci. 2024 Jul 1;65(8):14. doi: 10.1167/iovs.65.8.14.
4
tRNS boosts visual perceptual learning in participants with bilateral macular degeneration.
Front Aging Neurosci. 2024 Feb 21;16:1326435. doi: 10.3389/fnagi.2024.1326435. eCollection 2024.
5
Active Vision in Binocular Depth Estimation: A Top-Down Perspective.
Biomimetics (Basel). 2023 Sep 21;8(5):445. doi: 10.3390/biomimetics8050445.
6
Investigating the clinical validity of the guided progression analysis definition with 10-2 visual field in retinitis pigmentosa.
PLoS One. 2023 Sep 8;18(9):e0291208. doi: 10.1371/journal.pone.0291208. eCollection 2023.
7
Color Compensatory Mechanism of Chromatic Adaptation at the Cortical Level.
Iperception. 2022 Jun 8;13(3):20416695221105538. doi: 10.1177/20416695221105538. eCollection 2022 May.
8
Cone Photoreceptors in Diabetic Patients.
Front Med (Lausanne). 2022 Mar 17;9:826643. doi: 10.3389/fmed.2022.826643. eCollection 2022.
9
Variability in Retinal Neuron Populations and Associated Variations in Mass Transport Systems of the Retina in Health and Aging.
Front Aging Neurosci. 2022 Feb 25;14:778404. doi: 10.3389/fnagi.2022.778404. eCollection 2022.
10
Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape.
Invest Ophthalmol Vis Sci. 2022 Feb 1;63(2):8. doi: 10.1167/iovs.63.2.8.

本文引用的文献

1
Cone-Photoreceptor Density in Adolescents With Type 1 Diabetes.
Invest Ophthalmol Vis Sci. 2015 Oct;56(11):6339-43. doi: 10.1167/iovs.15-16817.
2
Variability in Human Cone Topography Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy.
Am J Ophthalmol. 2015 Aug;160(2):290-300.e1. doi: 10.1016/j.ajo.2015.04.034. Epub 2015 Apr 30.
3
Eye shape using partial coherence interferometry, autorefraction, and SD-OCT.
Optom Vis Sci. 2015 Jan;92(1):115-22. doi: 10.1097/OPX.0000000000000453.
4
The association between the foveal avascular zone and retinal thickness.
Invest Ophthalmol Vis Sci. 2014 Sep 30;55(10):6870-7. doi: 10.1167/iovs.14-15446.
5
The reliability of parafoveal cone density measurements.
Br J Ophthalmol. 2014 Aug;98(8):1126-31. doi: 10.1136/bjophthalmol-2013-304823. Epub 2014 May 22.
6
In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy.
Biomed Opt Express. 2014 Feb 27;5(3):961-74. doi: 10.1364/BOE.5.000961. eCollection 2014 Mar 1.
8
A direct and melanopsin-dependent fetal light response regulates mouse eye development.
Nature. 2013 Feb 14;494(7436):243-6. doi: 10.1038/nature11823. Epub 2013 Jan 16.
10
Cone photoreceptor packing density and the outer nuclear layer thickness in healthy subjects.
Invest Ophthalmol Vis Sci. 2012 Jun 14;53(7):3545-53. doi: 10.1167/iovs.11-8694.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验