Branson Oscar, Bonnin Elisa A, Perea Daniel E, Spero Howard J, Zhu Zihua, Winters Maria, Hönisch Bärbel, Russell Ann D, Fehrenbacher Jennifer S, Gagnon Alexander C
Department of Earth and Planetary Sciences, University of California, Davis, CA 95616;
School of Oceanography, University of Washington, Seattle, WA 98195.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12934-12939. doi: 10.1073/pnas.1522864113. Epub 2016 Oct 28.
Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Ångström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca, previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates.
浮游生物、珊瑚和其他生物会产生碳酸钙骨骼,这些骨骼对它们的生存至关重要,是全球碳循环的关键组成部分,并在其地球化学中记录了过去海洋学状况的档案。这些生物矿物形成的一个关键方面是有机模板结构与矿物沉淀过程之间的相互作用。基于实验室的研究表明,这些原子尺度的过程会深刻影响矿物的结构和组成,但它们在钙化生物中的重要性却鲜为人知,因为很难在与空间相关的尺度上测量体内生物矿物界面的化学性质。了解模板在生物矿物成核中的作用及其在骨骼地球化学中的重要性需要一种综合的多尺度方法,这种方法可以将有机-矿物界面的原子尺度观测置于更广泛的结构和地球化学背景中。在这里,我们使用原子探针断层扫描(APT,一种具有埃级空间分辨率的三维化学成像技术)和飞行时间二次离子质谱(ToF-SIMS,一种具有亚微米分辨率的二维化学成像技术)来绘制有孔虫环球圆筛藻碳酸盐骨骼内嵌入的有机模板结构的化学图谱。我们定量地关联了这些观测结果,揭示出环球圆筛藻中的有机模板在钠和镁中都有独特的富集,并导致骨骼内的化学异质性。我们的APT分析揭示了有机表面的阳离子组成,提供了证据表明,除了钙之外的阳离子,以前被认为是生物矿物模板中的被动旁观离子,可能在定义有机模板上碳酸盐成核的能量学方面很重要。