文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

苹果消费的短期生物标志物。

Short-term biomarkers of apple consumption.

作者信息

Saenger Theresa, Hübner Florian, Humpf Hans-Ulrich

机构信息

Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany.

出版信息

Mol Nutr Food Res. 2017 Mar;61(3). doi: 10.1002/mnfr.201600629. Epub 2016 Dec 20.


DOI:10.1002/mnfr.201600629
PMID:27794196
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6120132/
Abstract

SCOPE: Urinary biomarkers are used to estimate the nutritional intake of humans. The aim of this study was to distinguish between low, medium, and high apple consumption by quantifying possible intake biomarkers in urine samples after apple consumption by HPLC-MS/MS. Apples were chosen as they are the most consumed fruits in Germany. METHODS AND RESULTS: Thirty subjects took part in 7-day study. They abstained from apples and apple products except for one weighed apple portion resembling one, two, or four apples. Before apple consumption and during the following days spot urine samples were collected. These urine samples were incubated with β-glucuronidase, diluted, and directly measured by HPLC-MS/MS. Phloretin, epicatechin, procyanidin B2, and quercetin were detected in urine using Scheduled MRM mode. Phloretin was confirmed as a urinary biomarker of apple intake and had the ability to discriminate between low or medium (one or two apples) and high apple consumption (four apples). The groups also differ in the excretion of epicatechin and procyanidin B2. CONCLUSION: Apple consumption can be monitored by urinary biomarkers for a period of at least 12 h after consumption. Furthermore the amount of apples consumed can be estimated by the concentration of certain biomarkers.

摘要

范围:尿生物标志物用于评估人类的营养摄入情况。本研究的目的是通过高效液相色谱-串联质谱法(HPLC-MS/MS)对食用苹果后尿样中可能的摄入生物标志物进行定量分析,以区分低、中、高苹果摄入量。选择苹果是因为它们是德国消费最多的水果。 方法与结果:30名受试者参与了为期7天的研究。他们除了食用一份重量相当于一个、两个或四个苹果的苹果外, abstained from苹果和苹果制品。在食用苹果前及之后的几天内收集即时尿样。这些尿样与β-葡萄糖醛酸酶一起孵育、稀释,然后直接用HPLC-MS/MS进行测量。使用定时多反应监测模式在尿样中检测到根皮素、表儿茶素、原花青素B2和槲皮素。根皮素被确认为苹果摄入的尿生物标志物,并且有能力区分低或中等(一个或两个苹果)和高苹果摄入量(四个苹果)。这些组在表儿茶素和原花青素B2的排泄方面也存在差异。 结论:食用苹果后至少12小时内,可通过尿生物标志物监测苹果摄入量。此外,可通过某些生物标志物的浓度估计食用苹果的量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/e9d690bd4e87/MNFR-61-na-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/7a6391eba8c2/MNFR-61-na-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/623762637b03/MNFR-61-na-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/ff3a2d4f67c6/MNFR-61-na-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/50ad8faa23bf/MNFR-61-na-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/958f497cb3db/MNFR-61-na-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/e9d690bd4e87/MNFR-61-na-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/7a6391eba8c2/MNFR-61-na-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/623762637b03/MNFR-61-na-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/ff3a2d4f67c6/MNFR-61-na-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/50ad8faa23bf/MNFR-61-na-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/958f497cb3db/MNFR-61-na-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f85/6120132/e9d690bd4e87/MNFR-61-na-g006.jpg

相似文献

[1]
Short-term biomarkers of apple consumption.

Mol Nutr Food Res. 2017-3

[2]
Intestinal transit and systemic metabolism of apple polyphenols.

Eur J Nutr. 2010-12-24

[3]
Urinary Biomarkers for Orange Juice Consumption.

Mol Nutr Food Res. 2021-1

[4]
Characterization of procyanidin B2 oxidation products in an apple juice model solution and confirmation of their presence in apple juice by high-performance liquid chromatography coupled to electrospray ion trap mass spectrometry.

J Mass Spectrom. 2011-11

[5]
Two apples a day modulate human:microbiome co-metabolic processing of polyphenols, tyrosine and tryptophan.

Eur J Nutr. 2020-12

[6]
Major phenolics in apple and their contribution to the total antioxidant capacity.

J Agric Food Chem. 2003-10-22

[7]
Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study.

Nutrients. 2021-11-20

[8]
Phenolic composition of 91 Australian apple varieties: towards understanding their health attributes.

Food Funct. 2020-8-19

[9]
Isolation and structural elucidation of some procyanidins from apple by low-temperature nuclear magnetic resonance.

J Agric Food Chem. 2003-6-18

[10]
Metabolomic-Based Approach to Identify Biomarkers of Apple Intake.

Mol Nutr Food Res. 2020-6

引用本文的文献

[1]
Urinary metabolites as biomarkers of dietary intake: a systematic review.

Front Nutr. 2025-5-15

[2]
Investigation of Potential Food Intake Biomarkers by LC-MS/MS: Suitability Under Conditions Close to Everyday Live.

Mol Nutr Food Res. 2025-1

[3]
Phenol Biological Metabolites as Food Intake Biomarkers, a Pending Signature for a Complete Understanding of the Beneficial Effects of the Mediterranean Diet.

Nutrients. 2021-8-31

[4]
Two apples a day lower serum cholesterol and improve cardiometabolic biomarkers in mildly hypercholesterolemic adults: a randomized, controlled, crossover trial.

Am J Clin Nutr. 2020-2-1

[5]
Biomarkers of Nutrition and Health: New Tools for New Approaches.

Nutrients. 2019-5-16

[6]
Identification of potential human urinary biomarkers for tomato juice intake by mass spectrometry-based metabolomics.

Eur J Nutr. 2020-3

[7]
Food intake biomarkers for apple, pear, and stone fruit.

Genes Nutr. 2018-11-29

本文引用的文献

[1]
Systemic absorption and metabolism of dietary procyanidin B4 in pigs.

Mol Nutr Food Res. 2014-10-28

[2]
Dietary assessment methods in epidemiologic studies.

Epidemiol Health. 2014-7-22

[3]
Urine-an untapped goldmine for biomarker discovery?

Sci China Life Sci. 2013-12

[4]
Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes.

J Agric Food Chem. 2013-9-25

[5]
Urinary excretion and metabolism of procyanidins in pigs.

Mol Nutr Food Res. 2012-4

[6]
Evaluation of flavonoids and enterolactone in overnight urine as intake biomarkers of fruits, vegetables and beverages in the Inter99 cohort study using the method of triads.

Br J Nutr. 2012-3-27

[7]
A new high-performance liquid chromatography-tandem mass spectrometry method based on dispersive solid phase extraction for the determination of the mycotoxin fusarin C in corn ears and processed corn samples.

J Agric Food Chem. 2011-9-20

[8]
Analysis of Flavan-3-ols and procyanidins in food samples by reversed phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (RP-HPLC-ESI-MS/MS).

J Agric Food Chem. 2011-9-12

[9]
Intestinal transit and systemic metabolism of apple polyphenols.

Eur J Nutr. 2010-12-24

[10]
Absorption, metabolism, and excretion of cider dihydrochalcones in healthy humans and subjects with an ileostomy.

J Agric Food Chem. 2009-3-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索