Suppr超能文献

被动升温可减轻南极苔藓高山金发藓的压力并改变其繁殖投入。

Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum.

作者信息

Shortlidge Erin E, Eppley Sarah M, Kohler Hans, Rosenstiel Todd N, Zúñiga Gustavo E, Casanova-Katny Angélica

机构信息

Department of Biology, Portland State University, Portland, OR 97201, USA

Department of Biology and the Center for Life in Extreme Environments, Portland State University, Portland, OR 97207, USA.

出版信息

Ann Bot. 2017 Jan;119(1):27-38. doi: 10.1093/aob/mcw201. Epub 2016 Oct 29.

Abstract

BACKGROUND AND AIMS

The Western Antarctic Peninsula is one of the most rapidly warming regions on Earth, and many biotic communities inhabiting this dynamic region are responding to these well-documented climatic shifts. Yet some of the most prevalent organisms of terrestrial Antarctica, the mosses, and their responses to warming have been relatively overlooked and understudied. In this research, the impacts of 6 years of passive warming were investigated using open top chambers (OTCs), on moss communities of Fildes Peninsula, King George Island, Antarctica.

METHODS

The effects of experimental passive warming on the morphology, sexual reproductive effort and stress physiology of a common dioicous Antarctic moss, Polytrichastrum alpinum ,: were tested, gaining the first species-specific mechanistic insight into moss responses to warming in the Antarctic. Additionally community analyses were conducted examining the impact of warming on overall moss percentage cover and sporophyte production in intact Antarctic moss communities.

KEY RESULTS

Our results show a generally greater percentage moss cover under warming conditions as well as increased gametangia production in P. alpinum Distinct morphological and physiological shifts in P. alpinum were found under passive warming compared with those without warming: warmed mosses reduced investment in cellular stress defences, but invested more towards primary productivity and gametangia development.

CONCLUSIONS

Taken together, results from this study of mosses under passive warming imply that in ice-free moss-dominated regions, continued climate warming will probably have profound impacts on moss biology and colonization along the Western Antarctic Peninsula. Such findings highlight the fundamental role that mosses will play in influencing the terrestrialization of a warming Antarctica.

摘要

背景与目的

南极半岛西部是地球上变暖速度最快的地区之一,许多栖息在这个动态区域的生物群落正在对这些有充分记录的气候变化做出反应。然而,南极陆地一些最常见的生物——苔藓,及其对变暖的反应相对被忽视且研究不足。在本研究中,利用开顶式气室(OTC)研究了6年被动变暖对南极乔治王岛菲尔德斯半岛苔藓群落的影响。

方法

测试了实验性被动变暖对一种常见的雌雄异株南极苔藓高山金发藓的形态、有性生殖投入和胁迫生理的影响,首次获得了苔藓对南极变暖反应的物种特异性机制见解。此外,还进行了群落分析,研究变暖对完整南极苔藓群落中苔藓总体覆盖率和孢子体产生的影响。

主要结果

我们的结果表明,在变暖条件下,苔藓覆盖率总体上更高,高山金发藓的配子囊产量也有所增加。与未变暖的情况相比,被动变暖下的高山金发藓出现了明显的形态和生理变化:变暖的苔藓减少了对细胞胁迫防御的投入,但增加了对初级生产力和配子囊发育的投入。

结论

综合来看,这项关于被动变暖下苔藓的研究结果表明,在无冰且以苔藓为主的地区,持续的气候变暖可能会对南极半岛西部的苔藓生物学和定殖产生深远影响。这些发现凸显了苔藓在影响变暖南极的陆地化过程中将发挥的重要作用。

相似文献

1
Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum.
Ann Bot. 2017 Jan;119(1):27-38. doi: 10.1093/aob/mcw201. Epub 2016 Oct 29.
2
Species-specific effects of passive warming in an Antarctic moss system.
R Soc Open Sci. 2019 Nov 13;6(11):190744. doi: 10.1098/rsos.190744. eCollection 2019 Nov.
3
Invited review: climate change impacts in polar regions: lessons from Antarctic moss bank archives.
Glob Chang Biol. 2015 Mar;21(3):1041-57. doi: 10.1111/gcb.12774. Epub 2014 Dec 3.
5
Widespread Biological Response to Rapid Warming on the Antarctic Peninsula.
Curr Biol. 2017 Jun 5;27(11):1616-1622.e2. doi: 10.1016/j.cub.2017.04.034. Epub 2017 May 18.
6
Herbivore impacts to the moss layer determine tundra ecosystem response to grazing and warming.
Oecologia. 2009 Oct;161(4):747-58. doi: 10.1007/s00442-009-1427-5. Epub 2009 Aug 23.
8
Contributions to the bryological knowledge of ASPA 125, Fildes Peninsula, King George Island.
Biol Res. 2018 Aug 30;51(1):29. doi: 10.1186/s40659-018-0178-3.
9
It Is Hot in the Sun: Antarctic Mosses Have High Temperature Optima for Photosynthesis Despite Cold Climate.
Front Plant Sci. 2020 Aug 7;11:1178. doi: 10.3389/fpls.2020.01178. eCollection 2020.

引用本文的文献

2
Life-history traits and density dependence in metapopulations of a tropical moss: a monoicous species that is almost dioicous.
Oecologia. 2023 Feb;201(2):287-298. doi: 10.1007/s00442-022-05303-8. Epub 2022 Dec 15.
5
6
Photosynthesis on the edge: photoinhibition, desiccation and freezing tolerance of Antarctic bryophytes.
Photosynth Res. 2021 Aug;149(1-2):135-153. doi: 10.1007/s11120-020-00785-0. Epub 2020 Oct 8.
7
Species-specific effects of passive warming in an Antarctic moss system.
R Soc Open Sci. 2019 Nov 13;6(11):190744. doi: 10.1098/rsos.190744. eCollection 2019 Nov.

本文引用的文献

1
Potential NH and NO uptake in seven Sphagnum species.
New Phytol. 1998 Feb;138(2):287-293. doi: 10.1046/j.1469-8137.1998.00110.x.
2
HIGH LEVELS OF GENETIC VARIABILITY IN THE HAPLOID MOSS PLAGIOMNIUM CILIARE.
Evolution. 1989 Aug;43(5):1085-1096. doi: 10.1111/j.1558-5646.1989.tb02553.x.
3
Vascular plants as bioindicators of regional warming in Antarctica.
Oecologia. 1994 Sep;99(3-4):322-328. doi: 10.1007/BF00627745.
4
Photosynthesis and nitrogen relationships in leaves of C plants.
Oecologia. 1989 Jan;78(1):9-19. doi: 10.1007/BF00377192.
6
Modelling reproductive effort in sub-and maritime Antarctic mosses.
Oecologia. 1994 Nov;100(1-2):45-53. doi: 10.1007/BF00317129.
8
The changing form of Antarctic biodiversity.
Nature. 2015 Jun 25;522(7557):431-8. doi: 10.1038/nature14505.
9
Multidecadal warming of Antarctic waters.
Science. 2014 Dec 5;346(6214):1227-31. doi: 10.1126/science.1256117.
10
First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds.
PeerJ. 2014 Jun 12;2:e424. doi: 10.7717/peerj.424. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验