Suppr超能文献

一种用于选择分解级别和噪声阈值的新小波去噪方法。

A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds.

作者信息

Srivastava Madhur, Anderson C Lindsay, Freed Jack H

机构信息

National Biomedical Center for Advanced ESR Technology (ACERT) and the Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853 USA.

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853 USA.

出版信息

IEEE Access. 2016;4:3862-3877. doi: 10.1109/ACCESS.2016.2587581. Epub 2016 Jul 7.

Abstract

A new method is presented to denoise 1-D experimental signals using wavelet transforms. Although the state-of- the-art wavelet denoising methods perform better than other denoising methods, they are not very effective for experimental signals. Unlike images and other signals, experimental signals in chemical and biophysical applications for example, are less tolerant to signal distortion and under-denoising caused by the standard wavelet denoising methods. The new method 1) provides a method to select the number of decomposition levels to denoise, 2) uses a new formula to calculate noise thresholds that does not require noise estimation, 3) uses separate noise thresholds for positive and negative wavelet coefficients, 4) applies denoising to the Approximation component, and 5) allows the flexibility to adjust the noise thresholds. The new method is applied to continuous wave electron spin resonance (cw-ESR) spectra and it is found that it increases the signal-to-noise ratio (SNR) by more than 32 dB without distorting the signal, whereas standard denoising methods improve the SNR by less than 10 dB and with some distortion. Also, its computation time is more than 6 times faster.

摘要

提出了一种使用小波变换对一维实验信号进行去噪的新方法。尽管当前最先进的小波去噪方法比其他去噪方法表现更好,但它们对实验信号的效果并不十分理想。与图像和其他信号不同,例如化学和生物物理应用中的实验信号,对标准小波去噪方法引起的信号失真和去噪不足的容忍度较低。新方法:1)提供了一种选择去噪分解层数的方法;2)使用一种无需噪声估计的新公式来计算噪声阈值;3)对正负小波系数使用单独的噪声阈值;4)对近似分量进行去噪;5)允许灵活调整噪声阈值。将新方法应用于连续波电子自旋共振(cw-ESR)光谱,发现它能在不使信号失真的情况下将信噪比(SNR)提高超过32 dB,而标准去噪方法将SNR提高不到10 dB且会产生一些失真。此外,其计算时间快6倍以上。

相似文献

1
A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds.
IEEE Access. 2016;4:3862-3877. doi: 10.1109/ACCESS.2016.2587581. Epub 2016 Jul 7.
2
A wavelet-based method for MRI liver image denoising.
Biomed Tech (Berl). 2019 Dec 18;64(6):699-709. doi: 10.1515/bmt-2018-0033.
3
Optimal Wavelet Selection for Signal Denoising.
IEEE Access. 2024;12:45369-45380. doi: 10.1109/access.2024.3377664. Epub 2024 Mar 18.
4
Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains.
Healthc Technol Lett. 2014 Sep 16;1(3):104-9. doi: 10.1049/htl.2014.0073. eCollection 2014 Sep.
5
An efficient wavelet and curvelet-based PET image denoising technique.
Med Biol Eng Comput. 2019 Dec;57(12):2567-2598. doi: 10.1007/s11517-019-02014-w. Epub 2019 Oct 25.
7
Surface electromyography signal denoising via EEMD and improved wavelet thresholds.
Math Biosci Eng. 2020 Oct 16;17(6):6945-6962. doi: 10.3934/mbe.2020359.
8
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
Magn Reson Imaging. 2016 Oct;34(8):1128-40. doi: 10.1016/j.mri.2016.05.011. Epub 2016 May 26.

引用本文的文献

1
A review on spectral data preprocessing techniques for machine learning and quantitative analysis.
iScience. 2025 May 29;28(7):112759. doi: 10.1016/j.isci.2025.112759. eCollection 2025 Jul 18.
3
Optimal Wavelet Selection for Signal Denoising.
IEEE Access. 2024;12:45369-45380. doi: 10.1109/access.2024.3377664. Epub 2024 Mar 18.
4
Wavelet denoising of fiber optic monitoring signals in permafrost regions.
Sci Rep. 2024 Apr 20;14(1):9085. doi: 10.1038/s41598-024-59941-4.
6
Thermal Degradation of Thaumatin at Low pH and Its Prevention Using Alkyl Gallates.
Food Hydrocoll. 2023 May;139. doi: 10.1016/j.foodhyd.2023.108544. Epub 2023 Feb 1.
7
A Simulation Independent Analysis of Single- and Multi-Component cw ESR Spectra.
Magnetochemistry. 2023 May;9(5). doi: 10.3390/magnetochemistry9050112. Epub 2023 Apr 23.
8
Hyperfine Decoupling of ESR Spectra Using Wavelet Transform.
Magnetochemistry. 2022 Mar;8(3). doi: 10.3390/magnetochemistry8030032. Epub 2022 Mar 8.
9
Analysis of Small-Molecule Mixtures by Super-Resolved H NMR Spectroscopy.
J Phys Chem A. 2022 Dec 8;126(48):9108-9113. doi: 10.1021/acs.jpca.2c06858. Epub 2022 Nov 22.
10

本文引用的文献

1
Multifrequency electron spin resonance study of the dynamics of spin labeled T4 lysozyme.
J Phys Chem B. 2010 Apr 29;114(16):5503-21. doi: 10.1021/jp910606h.
2
An iterative algorithm for background removal in spectroscopy by wavelet transforms.
Appl Spectrosc. 2009 Dec;63(12):1370-6. doi: 10.1366/000370209790108905.
3
Spatially adaptive wavelet thresholding with context modeling for image denoising.
IEEE Trans Image Process. 2000;9(9):1522-31. doi: 10.1109/83.862630.
4
WaveShrink Using Modified Hyper-Shrinkage Function.
Conf Proc IEEE Eng Med Biol Soc. 2005;2006:30-2. doi: 10.1109/IEMBS.2005.1616334.
6
High-frequency ESR at ACERT.
Magn Reson Chem. 2005 Nov;43 Spec no.:S256-66. doi: 10.1002/mrc.1684.
7
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.
8
Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing.
IEEE Trans Med Imaging. 2004 Mar;23(3):374-87. doi: 10.1109/TMI.2004.824234.
9
New technologies in electron spin resonance.
Annu Rev Phys Chem. 2000;51:655-89. doi: 10.1146/annurev.physchem.51.1.655.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验