Suppr超能文献

一种用于选择分解级别和噪声阈值的新小波去噪方法。

A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds.

作者信息

Srivastava Madhur, Anderson C Lindsay, Freed Jack H

机构信息

National Biomedical Center for Advanced ESR Technology (ACERT) and the Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853 USA.

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853 USA.

出版信息

IEEE Access. 2016;4:3862-3877. doi: 10.1109/ACCESS.2016.2587581. Epub 2016 Jul 7.

Abstract

A new method is presented to denoise 1-D experimental signals using wavelet transforms. Although the state-of- the-art wavelet denoising methods perform better than other denoising methods, they are not very effective for experimental signals. Unlike images and other signals, experimental signals in chemical and biophysical applications for example, are less tolerant to signal distortion and under-denoising caused by the standard wavelet denoising methods. The new method 1) provides a method to select the number of decomposition levels to denoise, 2) uses a new formula to calculate noise thresholds that does not require noise estimation, 3) uses separate noise thresholds for positive and negative wavelet coefficients, 4) applies denoising to the Approximation component, and 5) allows the flexibility to adjust the noise thresholds. The new method is applied to continuous wave electron spin resonance (cw-ESR) spectra and it is found that it increases the signal-to-noise ratio (SNR) by more than 32 dB without distorting the signal, whereas standard denoising methods improve the SNR by less than 10 dB and with some distortion. Also, its computation time is more than 6 times faster.

摘要

提出了一种使用小波变换对一维实验信号进行去噪的新方法。尽管当前最先进的小波去噪方法比其他去噪方法表现更好,但它们对实验信号的效果并不十分理想。与图像和其他信号不同,例如化学和生物物理应用中的实验信号,对标准小波去噪方法引起的信号失真和去噪不足的容忍度较低。新方法:1)提供了一种选择去噪分解层数的方法;2)使用一种无需噪声估计的新公式来计算噪声阈值;3)对正负小波系数使用单独的噪声阈值;4)对近似分量进行去噪;5)允许灵活调整噪声阈值。将新方法应用于连续波电子自旋共振(cw-ESR)光谱,发现它能在不使信号失真的情况下将信噪比(SNR)提高超过32 dB,而标准去噪方法将SNR提高不到10 dB且会产生一些失真。此外,其计算时间快6倍以上。

相似文献

3
Optimal Wavelet Selection for Signal Denoising.用于信号去噪的最优小波选择
IEEE Access. 2024;12:45369-45380. doi: 10.1109/access.2024.3377664. Epub 2024 Mar 18.
5
An efficient wavelet and curvelet-based PET image denoising technique.一种基于小波和曲波的 PET 图像去噪技术。
Med Biol Eng Comput. 2019 Dec;57(12):2567-2598. doi: 10.1007/s11517-019-02014-w. Epub 2019 Oct 25.
8
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.用于复杂磁共振数据去噪的小波域TI类维纳滤波
Magn Reson Imaging. 2016 Oct;34(8):1128-40. doi: 10.1016/j.mri.2016.05.011. Epub 2016 May 26.

引用本文的文献

3
Optimal Wavelet Selection for Signal Denoising.用于信号去噪的最优小波选择
IEEE Access. 2024;12:45369-45380. doi: 10.1109/access.2024.3377664. Epub 2024 Mar 18.
8
Hyperfine Decoupling of ESR Spectra Using Wavelet Transform.利用小波变换对电子自旋共振谱进行超精细解耦
Magnetochemistry. 2022 Mar;8(3). doi: 10.3390/magnetochemistry8030032. Epub 2022 Mar 8.
9
Analysis of Small-Molecule Mixtures by Super-Resolved H NMR Spectroscopy.超分辨核磁共振光谱法分析小分子混合物。
J Phys Chem A. 2022 Dec 8;126(48):9108-9113. doi: 10.1021/acs.jpca.2c06858. Epub 2022 Nov 22.

本文引用的文献

4
WaveShrink Using Modified Hyper-Shrinkage Function.
Conf Proc IEEE Eng Med Biol Soc. 2005;2006:30-2. doi: 10.1109/IEMBS.2005.1616334.
6
High-frequency ESR at ACERT.ACERT的高频电子自旋共振。
Magn Reson Chem. 2005 Nov;43 Spec no.:S256-66. doi: 10.1002/mrc.1684.
9
New technologies in electron spin resonance.电子自旋共振中的新技术。
Annu Rev Phys Chem. 2000;51:655-89. doi: 10.1146/annurev.physchem.51.1.655.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验