Suppr超能文献

用于增强磁共振波谱的谱小波特征分析与分类辅助去噪

Spectral Wavelet-feature Analysis and Classification Assisted Denoising for enhancing magnetic resonance spectroscopy.

作者信息

Ji Bing, Hosseini Zahra, Wang Liya, Zhou Lei, Tu Xinhua, Mao Hui

机构信息

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA.

MR R&D Collaboration, Siemens Medical Solutions Inc., Atlanta, Georgia, USA.

出版信息

NMR Biomed. 2021 Jun;34(6):e4497. doi: 10.1002/nbm.4497. Epub 2021 Mar 9.

Abstract

Magnetic resonance spectroscopy (MRS) is capable of revealing important biochemical and metabolic information of tissues noninvasively. However, the low concentrations of metabolites often lead to poor signal-to-noise ratio (SNR) and a long acquisition time. Therefore, the applications of MRS in detection and quantitative measurements of metabolites in vivo remain limited. Reducing or even eliminating noise can improve SNR sufficiently to obtain high quality spectra in addition to increasing the number of signal averaging (NSA) or the field strength, both of which are limited in clinical applications. We present a Spectral Wavelet-feature ANalysis and Classification Assisted Denoising (SWANCAD) approach to differentiate signal and noise peaks in magnetic resonance spectra based on their respective wavelet features, followed by removing the identified noise components to improve SNR. The performance of this new denoising approach was evaluated by measuring and comparing SNRs and quantified metabolite levels of low NSA spectra (e.g. NSA = 8) before and after denoising using the SWANCAD approach or by conventional spectral fitting and denoising methods, such as LCModel and wavelet threshold methods, as well as the high NSA spectra (e.g. NSA = 192) recorded in the same sampling volumes. The results demonstrated that SWANCAD offers a more effective way to detect the signals and improve SNR by removing noise from the noisy spectra collected with low NSA or in the subminute scan time (e.g. NSA = 8 or 16 s). The potential applications of SWANCAD include using low NSA to accelerate MRS acquisition while maintaining adequate spectroscopic information for detection and quantification of the metabolites of interest when a limited time is available for an MRS examination in the clinical setting.

摘要

磁共振波谱(MRS)能够无创地揭示组织重要的生化和代谢信息。然而,代谢物的低浓度常常导致信噪比(SNR)不佳以及采集时间过长。因此,MRS在体内代谢物检测和定量测量中的应用仍然有限。除了增加信号平均次数(NSA)或场强(这两者在临床应用中都受到限制)之外,减少甚至消除噪声可以充分提高SNR以获得高质量的波谱。我们提出了一种基于磁共振波谱中信号和噪声峰各自的小波特征来区分它们的谱小波特征分析和分类辅助去噪(SWANCAD)方法,随后去除识别出的噪声成分以提高SNR。通过测量和比较使用SWANCAD方法或传统谱拟合及去噪方法(如LCModel和小波阈值方法)去噪前后低NSA波谱(例如NSA = 8)以及在相同采样体积中记录的高NSA波谱(例如NSA = 192)的SNR和定量代谢物水平,来评估这种新去噪方法的性能。结果表明,SWANCAD提供了一种更有效的方法来检测信号,并通过从低NSA或在亚分钟扫描时间(例如NSA = 8或16秒)收集的噪声波谱中去除噪声来提高SNR。SWANCAD的潜在应用包括在临床环境中进行MRS检查时间有限时,使用低NSA来加速MRS采集,同时保持足够的波谱信息用于检测和定量感兴趣的代谢物。

相似文献

4
Assessment of H-MRS spectra via multiset canonical correlation analysis and empirical mode decomposition.
Comput Biol Med. 2025 Mar;187:109806. doi: 10.1016/j.compbiomed.2025.109806. Epub 2025 Feb 8.
8
Stationary wavelet transform based ECG signal denoising method.
ISA Trans. 2021 Aug;114:251-262. doi: 10.1016/j.isatra.2020.12.029. Epub 2020 Dec 15.
9
Effects of proximity and noise level of phased array coil elements on overall signal-to-noise in parallel MR spectroscopy.
Magn Reson Imaging. 2018 Apr;47:125-130. doi: 10.1016/j.mri.2017.12.001. Epub 2017 Dec 5.

引用本文的文献

2
WAND: Wavelet Analysis-Based Neural Decomposition of MRS Signals for Artifact Removal.
NMR Biomed. 2025 Jun;38(6):e70038. doi: 10.1002/nbm.70038.
3
4
An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis.
Radiol Imaging Cancer. 2024 May;6(3):e230101. doi: 10.1148/rycan.230101.
6
Label-Free Chemically and Molecularly Selective Magnetic Resonance Imaging.
Chem Biomed Imaging. 2023 Apr 12;1(2):121-139. doi: 10.1021/cbmi.3c00019. eCollection 2023 May 22.
7
Removal of Dust Microelectric Signal Based on Empirical Mode Decomposition and Multifractal Detrended Fluctuation Analysis.
Comput Intell Neurosci. 2021 Aug 6;2021:5468514. doi: 10.1155/2021/5468514. eCollection 2021.

本文引用的文献

1
Ultrafast magnetic resonance spectroscopic imaging using SPICE with learned subspaces.
Magn Reson Med. 2020 Feb;83(2):377-390. doi: 10.1002/mrm.27980. Epub 2019 Sep 4.
2
3
Brain Glucose Metabolism: Integration of Energetics with Function.
Physiol Rev. 2019 Jan 1;99(1):949-1045. doi: 10.1152/physrev.00062.2017.
4
Effects of proximity and noise level of phased array coil elements on overall signal-to-noise in parallel MR spectroscopy.
Magn Reson Imaging. 2018 Apr;47:125-130. doi: 10.1016/j.mri.2017.12.001. Epub 2017 Dec 5.
6
Improved localization, spectral quality, and repeatability with advanced MRS methodology in the clinical setting.
Magn Reson Med. 2018 Mar;79(3):1241-1250. doi: 10.1002/mrm.26788. Epub 2017 Jun 15.
7
Signal-to-noise ratio evaluation of magnetic resonance images in the presence of an ultrasonic motor.
Biomed Eng Online. 2017 Apr 14;16(1):45. doi: 10.1186/s12938-017-0331-1.
8
Denoising of MR spectroscopic imaging data using statistical selection of principal components.
MAGMA. 2016 Dec;29(6):811-822. doi: 10.1007/s10334-016-0566-z. Epub 2016 Jun 3.
9
High-resolution (1) H-MRSI of the brain using SPICE: Data acquisition and image reconstruction.
Magn Reson Med. 2016 Oct;76(4):1059-70. doi: 10.1002/mrm.26019. Epub 2015 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验