Suppr超能文献

用于对有机和生物分子中(1)H和(13)C NMR化学位移进行软而准确预测与归属的密度泛函基准测试。

Benchmarking of density functionals for a soft but accurate prediction and assignment of (1) H and (13)C NMR chemical shifts in organic and biological molecules.

作者信息

Benassi Enrico

机构信息

Tomsk Polytechnic University, Lenin Ave. 43А, Tomsk, 634034, Russian Federation.

Scuola Superiore Normale, Piazza dei Cavalieri 7, Pisa, Italy, 56126.

出版信息

J Comput Chem. 2017 Jan 15;38(2):87-92. doi: 10.1002/jcc.24521. Epub 2016 Oct 31.

Abstract

A number of programs and tools that simulate H and C nuclear magnetic resonance (NMR) chemical shifts using empirical approaches are available. These tools are user-friendly, but they provide a very rough (and sometimes misleading) estimation of the NMR properties, especially for complex systems. Rigorous and reliable ways to predict and interpret NMR properties of simple and complex systems are available in many popular computational program packages. Nevertheless, experimentalists keep relying on these "unreliable" tools in their daily work because, to have a sufficiently high accuracy, these rigorous quantum mechanical methods need high levels of theory. An alternative, efficient, semi-empirical approach has been proposed by Bally, Rablen, Tantillo, and coworkers. This idea consists of creating linear calibrations models, on the basis of the application of different combinations of functionals and basis sets. Following this approach, the predictive capability of a wider range of popular functionals was systematically investigated and tested. The NMR chemical shifts were computed in solvated phase at density functional theory level, using 30 different functionals coupled with three different triple-ζ basis sets. © 2016 Wiley Periodicals, Inc.

摘要

有许多使用经验方法模拟氢和碳核磁共振(NMR)化学位移的程序和工具。这些工具用户友好,但它们对NMR性质的估计非常粗略(有时甚至会产生误导),特别是对于复杂体系。在许多流行的计算程序包中都有预测和解释简单及复杂体系NMR性质的严格且可靠的方法。然而,实验人员在日常工作中仍依赖这些“不可靠”的工具,因为要达到足够高的精度,这些严格的量子力学方法需要高水平的理论。Bally、Rablen、Tantillo及其同事提出了一种替代的、高效的半经验方法。这个想法是基于不同泛函和基组组合的应用创建线性校准模型。按照这种方法,系统地研究和测试了更广泛的流行泛函的预测能力。在密度泛函理论水平下,在溶剂化相中使用30种不同的泛函与三种不同的三重ζ基组计算NMR化学位移。© 2016威利期刊公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验