Pan Ming-Kai, Kuo Sheng-Han, Tai Chun-Hwei, Liou Jyun-You, Pei Ju-Chun, Chang Chia-Yuan, Wang Yi-Mei, Liu Wen-Chuan, Wang Tien-Rei, Lai Wen-Sung, Kuo Chung-Chin
J Clin Invest. 2016 Dec 1;126(12):4516-4526. doi: 10.1172/JCI88170. Epub 2016 Oct 31.
Neuronal oscillations at beta frequencies (20-50 Hz) in the cortico-basal ganglia circuits have long been the leading theory for bradykinesia, the slow movements that are cardinal symptoms in Parkinson's disease (PD). The beta oscillation theory helped to drive a frequency-based design in the development of deep brain stimulation therapy for PD. However, in contrast to this theory, here we have found that bradykinesia can be completely dissociated from beta oscillations in rodent models. Instead, we observed that bradykinesia is causatively regulated by the burst-firing pattern of the subthalamic nucleus (STN) in a feed-forward, or efferent-only, mechanism. Furthermore, STN burst-firing and beta oscillations are two independent mechanisms that are regulated by different NMDA receptors in STN. Our results shift the understanding of bradykinesia pathophysiology from an interactive oscillatory theory toward a feed-forward mechanism that is coded by firing patterns. This distinct mechanism may improve understanding of the fundamental concepts of motor control and enable more selective targeting of bradykinesia-specific mechanisms to improve PD therapy.
长期以来,皮质-基底神经节回路中β频率(20-50赫兹)的神经元振荡一直是帕金森病(PD)主要症状——运动迟缓的主导理论。β振荡理论推动了基于频率的设计在PD深部脑刺激疗法开发中的应用。然而,与该理论相反,我们在此发现,在啮齿动物模型中,运动迟缓可与β振荡完全分离。相反,我们观察到运动迟缓是由底丘脑核(STN)的爆发式放电模式以前馈或仅传出机制因果性调节的。此外,STN爆发式放电和β振荡是由STN中不同的N-甲基-D-天冬氨酸(NMDA)受体调节的两种独立机制。我们的研究结果将对运动迟缓病理生理学的理解从交互式振荡理论转向由放电模式编码的前馈机制。这种独特机制可能有助于增进对运动控制基本概念的理解,并使针对运动迟缓特异性机制的靶向更具选择性,以改善PD治疗。