Suppr超能文献

小脑以数字精度和个体间一致性计算运动的频率动态。

The cerebellum computes frequency dynamics for motions with numerical precision and cross-individual uniformity.

作者信息

Liu Chia-Wei, Chen Shun-Ying, Wang Yi-Mei, Lu Liang-Yin, Chen Peng, Liang Ting-Yu, Liu Wen-Chuan, Kumar Ami, Kuo Sheng-Han, Lee Jye-Chang, Lo Chung-Chuan, Wu Shun-Chi, Pan Ming-Kai

机构信息

Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.

Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.

出版信息

Res Sq. 2024 Jul 30:rs.3.rs-4615547. doi: 10.21203/rs.3.rs-4615547/v1.

Abstract

Cross-individual variability is considered the essence of biology, preventing precise mathematical descriptions of biological motion like the physics law of motion. Here we report that the cerebellum shapes motor kinematics by encoding dynamic motor frequencies with remarkable numerical precision and cross-individual uniformity. Using in-vivo electrophysiology and optogenetics in mice, we confirmed that deep cerebellar neurons encoded frequencies via populational tuning of neuronal firing probabilities, creating cerebellar oscillations and motions with matched frequencies. The mechanism was consistently presented in self-generated rhythmic and non-rhythmic motions triggered by a vibrational platform, or skilled tongue movements of licking in all tested mice with cross-individual uniformity. The precision and uniformity allowed us to engineer complex motor kinematics with designed frequencies. We further validated the frequency-coding function of the human cerebellum using cerebellar electroencephalography recordings and alternating-current stimulation during voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor kinematics with precision and uniformity, the mathematical foundation for brain-computer interface for motor control.

摘要

个体间的变异性被认为是生物学的本质,这使得无法像物理运动定律那样对生物运动进行精确的数学描述。在此,我们报告小脑通过以显著的数值精度和个体间的一致性对动态运动频率进行编码来塑造运动运动学。利用小鼠体内电生理学和光遗传学,我们证实小脑深部神经元通过神经元放电概率的群体调谐来编码频率,从而产生具有匹配频率的小脑振荡和运动。在由振动平台触发的自发节律性和非节律性运动中,或者在所有测试小鼠舔舐的熟练舌头运动中,这种机制都以个体间的一致性持续呈现。这种精度和一致性使我们能够设计具有特定频率的复杂运动运动学。我们还通过在自愿轻敲任务期间进行小脑脑电图记录和交流电刺激,进一步验证了人类小脑的频率编码功能。我们的研究结果揭示了一种具有精度和一致性的小脑运动运动学算法,这是用于运动控制的脑机接口的数学基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fc9/11326405/2c52ed208e55/nihpp-rs4615547v1-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验