Mao Angelo S, Shin Jae-Won, Utech Stefanie, Wang Huanan, Uzun Oktay, Li Weiwei, Cooper Madeline, Hu Yuebi, Zhang Liyuan, Weitz David A, Mooney David J
Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, Massachusetts 02138, USA.
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Nat Mater. 2017 Feb;16(2):236-243. doi: 10.1038/nmat4781. Epub 2016 Oct 31.
Existing techniques to encapsulate cells into microscale hydrogels generally yield high polymer-to-cell ratios and lack control over the hydrogel's mechanical properties. Here, we report a microfluidic-based method for encapsulating single cells in an approximately six-micrometre layer of alginate that increases the proportion of cell-containing microgels by a factor of ten, with encapsulation efficiencies over 90%. We show that in vitro cell viability was maintained over a three-day period, that the microgels are mechanically tractable, and that, for microscale cell assemblages of encapsulated marrow stromal cells cultured in microwells, osteogenic differentiation of encapsulated cells depends on gel stiffness and cell density. We also show that intravenous injection of singly encapsulated marrow stromal cells into mice delays clearance kinetics and sustains donor-derived soluble factors in vivo. The encapsulation of single cells in tunable hydrogels should find use in a variety of tissue engineering and regenerative medicine applications.
现有的将细胞包封到微米级水凝胶中的技术通常会产生高分子与细胞比例,并且无法控制水凝胶的机械性能。在此,我们报告了一种基于微流体的方法,用于将单个细胞包封在约6微米厚的藻酸盐层中,该方法将含细胞微凝胶的比例提高了10倍,包封效率超过90%。我们表明,体外细胞活力在三天内得以维持,微凝胶在机械性能上易于处理,并且对于在微孔中培养的包封骨髓基质细胞的微米级细胞聚集体而言,包封细胞的成骨分化取决于凝胶硬度和细胞密度。我们还表明,将单个包封的骨髓基质细胞静脉注射到小鼠体内会延迟清除动力学并在体内维持供体来源的可溶性因子。将单个细胞包封在可调谐水凝胶中应可用于各种组织工程和再生医学应用。