Suppr超能文献

底物应力松弛调节细胞铺展。

Substrate stress relaxation regulates cell spreading.

作者信息

Chaudhuri Ovijit, Gu Luo, Darnell Max, Klumpers Darinka, Bencherif Sidi A, Weaver James C, Huebsch Nathaniel, Mooney David J

机构信息

1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA [3] Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.

1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Nat Commun. 2015 Feb 19;6:6364. doi: 10.1038/ncomms7365.

Abstract

Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.

摘要

细胞机械转导的研究集中于这样一种观点,即细胞通过测量它们施加于细胞外基质(ECM)上的牵引力的阻力来感知ECM弹性。然而,这些研究通常使用纯弹性材料作为底物,而生理ECM是粘弹性的,并表现出应力松弛,因此细胞施加的细胞牵引力会重塑ECM。在这里,我们通过计算建模和细胞实验研究ECM应力松弛对细胞行为的影响。令人惊讶的是,我们的计算模型和实验均发现,在表现出应力松弛的软底物上培养的细胞的铺展大于在相同模量的弹性底物上培养的细胞,但与在更硬的弹性底物上铺展的细胞相似。这些发现挑战了目前关于细胞如何感知和响应ECM的观点。

相似文献

1
Substrate stress relaxation regulates cell spreading.
Nat Commun. 2015 Feb 19;6:6364. doi: 10.1038/ncomms7365.
2
Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts.
Acta Biomater. 2017 Oct 15;62:82-90. doi: 10.1016/j.actbio.2017.08.041. Epub 2017 Aug 30.
3
Hydrogels with tunable stress relaxation regulate stem cell fate and activity.
Nat Mater. 2016 Mar;15(3):326-34. doi: 10.1038/nmat4489. Epub 2015 Nov 30.
4
Extracellular matrix plasticity as a driver of cell spreading.
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):25999-26007. doi: 10.1073/pnas.2008801117. Epub 2020 Oct 5.
5
Effects of extracellular matrix viscoelasticity on cellular behaviour.
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.
6
Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2686-E2695. doi: 10.1073/pnas.1716620115. Epub 2018 Mar 5.
9
10
Substrates with patterned extracellular matrix and subcellular stiffness gradients reveal local biomechanical responses.
Adv Mater. 2014 Feb 26;26(8):1242-7. doi: 10.1002/adma.201304607. Epub 2013 Dec 9.

引用本文的文献

1
The role of non-linear viscoelastic hydrogel mechanics in cell culture and transduction.
Mater Today Bio. 2025 Aug 9;34:102188. doi: 10.1016/j.mtbio.2025.102188. eCollection 2025 Oct.
2
Mechanical Cell Reprogramming on Tissue-Mimicking Hydrogels for Cancer Cell Transdifferentiation.
Research (Wash D C). 2025 Aug 18;8:0810. doi: 10.34133/research.0810. eCollection 2025.
3
Research progress on the advantages, mechanisms and design strategies of nanomaterials for immunomodulatory angiogenesis.
Mater Today Bio. 2025 Jul 29;34:102147. doi: 10.1016/j.mtbio.2025.102147. eCollection 2025 Oct.
4
Bio-orthogonally double cross-linked alginate-gelatin hydrogels with tunable viscoelasticity for cardiac tissue engineering.
Mater Today Bio. 2025 Jul 22;34:102121. doi: 10.1016/j.mtbio.2025.102121. eCollection 2025 Oct.
5
Mathematical modelling of mechanotransduction via RhoA signalling pathways.
PLoS Comput Biol. 2025 Jul 31;21(7):e1013305. doi: 10.1371/journal.pcbi.1013305. eCollection 2025 Jul.
7
Mechanobiological engineering strategies for organoid culture.
APL Bioeng. 2025 Jul 18;9(3):031501. doi: 10.1063/5.0275439. eCollection 2025 Sep.
8
Precision design of dextran-permeated agarose hydrogels matching adipose stem cell adhesion timescales.
Mater Today Bio. 2025 May 6;32:101832. doi: 10.1016/j.mtbio.2025.101832. eCollection 2025 Jun.
9
Insight to motor clutch model for sensing of ECM residual strain.
Mechanobiol Med. 2023 Oct 12;1(2):100025. doi: 10.1016/j.mbm.2023.100025. eCollection 2023 Dec.
10
The motor-clutch model in mechanobiology and mechanomedicine.
Mechanobiol Med. 2024 Apr 3;2(3):100067. doi: 10.1016/j.mbm.2024.100067. eCollection 2024 Sep.

本文引用的文献

1
Soft biological materials and their impact on cell function.
Soft Matter. 2007 Feb 14;3(3):299-306. doi: 10.1039/b610522j.
2
Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation.
Science. 2013 Aug 30;341(6149):1240104. doi: 10.1126/science.1240104.
4
Extracellular-matrix tethering regulates stem-cell fate.
Nat Mater. 2012 May 27;11(7):642-9. doi: 10.1038/nmat3339.
5
Substrate viscosity enhances correlation in epithelial sheet movement.
Biophys J. 2011 Jul 20;101(2):297-306. doi: 10.1016/j.bpj.2011.05.048.
6
Role of YAP/TAZ in mechanotransduction.
Nature. 2011 Jun 8;474(7350):179-83. doi: 10.1038/nature10137.
7
The influence of substrate creep on mesenchymal stem cell behaviour and phenotype.
Biomaterials. 2011 Sep;32(26):5979-93. doi: 10.1016/j.biomaterials.2011.04.003. Epub 2011 May 31.
8
Balancing forces: architectural control of mechanotransduction.
Nat Rev Mol Cell Biol. 2011 May;12(5):308-19. doi: 10.1038/nrm3112.
9
Stress-relaxation behavior in gels with ionic and covalent crosslinks.
J Appl Phys. 2010 Mar 15;107(6):63509. doi: 10.1063/1.3343265. Epub 2010 Mar 23.
10
Optimal matrix rigidity for stress fiber polarization in stem cells.
Nat Phys. 2010 Jun 1;6(6):468-473. doi: 10.1038/nphys1613.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验