Suppr超能文献

mirDNMR:一个以基因为中心的人类背景新生突变率数据库。

mirDNMR: a gene-centered database of background de novo mutation rates in human.

作者信息

Jiang Yi, Li Zhongshan, Liu Zhenwei, Chen Denghui, Wu Wanying, Du Yaoqiang, Ji Liying, Jin Zi-Bing, Li Wei, Wu Jinyu

机构信息

Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China.

Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China.

出版信息

Nucleic Acids Res. 2017 Jan 4;45(D1):D796-D803. doi: 10.1093/nar/gkw1044. Epub 2016 Oct 30.

Abstract

De novo germline mutations (DNMs) are the rarest genetic variants proven to cause a considerable number of sporadic genetic diseases, such as autism spectrum disorders, epileptic encephalopathy, schizophrenia, congenital heart disease, type 1 diabetes, and hearing loss. However, it is difficult to accurately assess the cause of DNMs and identify disease-causing genes from the considerable number of DNMs in probands. A common method to this problem is to identify genes that harbor significantly more DNMs than expected by chance, with accurate background DNM rate (DNMR) required. Therefore, in this study, we developed a novel database named mirDNMR for the collection of gene-centered background DNMRs obtained from different methods and population variation data. The database has the following functions: (i) browse and search the background DNMRs of each gene predicted by four different methods, including GC content (DNMR-GC), sequence context (DNMR-SC), multiple factors (DNMR-MF) and local DNA methylation level (DNMR-DM); (ii) search variant frequencies in publicly available databases, including ExAC, ESP6500, UK10K, 1000G and dbSNP and (iii) investigate the DNM burden to prioritize candidate genes based on the four background DNMRs using three statistical methods (TADA, Binomial and Poisson test). As a case study, we successfully employed our database in candidate gene prioritization for a sporadic complex disease: intellectual disability. In conclusion, mirDNMR (https://www.wzgenomics.cn/mirdnmr/) can be widely used to identify the genetic basis of sporadic genetic diseases.

摘要

新生种系突变(DNMs)是已被证实可导致相当数量散发性遗传疾病的最罕见遗传变异,如自闭症谱系障碍、癫痫性脑病、精神分裂症、先天性心脏病、1型糖尿病和听力损失。然而,很难准确评估DNMs的成因,并从先证者中大量的DNMs中识别致病基因。解决这个问题的常用方法是识别那些携带的DNMs明显多于偶然预期的基因,这需要准确的背景DNM率(DNMR)。因此,在本研究中,我们开发了一个名为mirDNMR的新型数据库,用于收集通过不同方法获得的以基因为中心的背景DNMRs和群体变异数据。该数据库具有以下功能:(i)浏览和搜索通过四种不同方法预测的每个基因的背景DNMRs,包括GC含量(DNMR-GC)、序列上下文(DNMR-SC)、多因素(DNMR-MF)和局部DNA甲基化水平(DNMR-DM);(ii)在公开可用的数据库中搜索变异频率,包括ExAC、ESP6500、UK10K、1000G和dbSNP;以及(iii)使用三种统计方法(TADA、二项式和泊松检验),基于四种背景DNMRs研究DNM负担,以对候选基因进行优先级排序。作为一个案例研究,我们成功地将我们的数据库用于一种散发性复杂疾病——智力残疾的候选基因优先级排序。总之,可以广泛使用mirDNMR(https://www.wzgenomics.cn/mirdnmr/)来识别散发性遗传疾病的遗传基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b885/5210538/e09f572ec166/gkw1044fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验