Vallée Alexandre, Lecarpentier Yves
CHU Amiens Picardie, Université Picardie Jules VerneAmiens, France; Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of PoitiersPoitiers, France; AP-HP, Epidemiology and Clinical Research Department, University Hospital Bichat-Claude BernardParis, France.
Centre de Recherche Clinique, Hôpital de Meaux Meaux, France.
Front Neurosci. 2016 Oct 19;10:459. doi: 10.3389/fnins.2016.00459. eCollection 2016.
The molecular mechanisms underlying the pathophysiology of Alzheimer's disease (AD) are still not fully understood. In AD, Wnt/beta-catenin signaling has been shown to be downregulated while the peroxisome proliferator-activated receptor (PPAR) gamma (mARN and protein) is upregulated. Certain neurodegenerative diseases share the same Wnt/beta-catenin/PPAR gamma profile, such as bipolar disorder and schizophrenia. Conversely, other NDs share an opposite profile, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis, and Friedreich's ataxia. AD is characterized by the deposition of extracellular Abeta plaques and the formation of intracellular neurofibrillary tangles in the central nervous system (CNS). Activation of Wnt signaling or inhibition of both glycogen synthase kinase-3beta and Dickkopf 1, two key negative regulators of the canonical Wnt pathway, are able to protect against Abeta neurotoxicity and to ameliorate cognitive performance in AD patients. Although PPAR gamma is upregulated in AD patients, and despite the fact that it has been shown that the PPAR gamma and Wnt/beta catenin pathway systems work in an opposite manner, PPAR gamma agonists diminish learning and memory deficits, decrease Abeta activation of microglia, and prevent hippocampal and cortical neurons from dying. These beneficial effects observed in AD transgenic mice and patients might be partially due to the anti-inflammatory properties of PPAR gamma agonists. Moreover, activation of PPAR alpha upregulates transcription of the alpha-secretase gene and represents a new therapeutic treatment for AD. This review focuses largely on the behavior of two opposing pathways in AD, namely Wnt/beta-catenin signaling and PPAR gamma. It is hoped that this approach may help to develop novel AD therapeutic strategies integrating PPAR alpha signaling.
阿尔茨海默病(AD)病理生理学背后的分子机制仍未完全明确。在AD中,Wnt/β-连环蛋白信号通路已被证明下调,而过氧化物酶体增殖物激活受体(PPAR)γ(mRNA和蛋白)上调。某些神经退行性疾病具有相同的Wnt/β-连环蛋白/PPARγ特征,如双相情感障碍和精神分裂症。相反,其他神经退行性疾病具有相反的特征,如肌萎缩侧索硬化症、帕金森病、亨廷顿病、多发性硬化症和弗里德赖希共济失调。AD的特征是细胞外β淀粉样蛋白斑块沉积以及中枢神经系统(CNS)中细胞内神经原纤维缠结的形成。Wnt信号通路的激活或糖原合酶激酶-3β和Dickkopf 1(经典Wnt通路的两个关键负调节因子)的抑制能够预防β淀粉样蛋白神经毒性并改善AD患者的认知表现。尽管AD患者中PPARγ上调,且尽管已表明PPARγ和Wnt/β-连环蛋白通路系统以相反方式起作用,但PPARγ激动剂可减少学习和记忆缺陷、降低小胶质细胞的β淀粉样蛋白激活,并防止海马体和皮质神经元死亡。在AD转基因小鼠和患者中观察到的这些有益作用可能部分归因于PPARγ激动剂的抗炎特性。此外,PPARα的激活上调α-分泌酶基因的转录,代表了一种新的AD治疗方法。本综述主要关注AD中两条相反通路的行为,即Wnt/β-连环蛋白信号通路和PPARγ。希望这种方法可能有助于开发整合PPARα信号通路的新型AD治疗策略。