Suppr超能文献

读者如何理解新闻标题中使用的因果和相关表达。

How readers understand causal and correlational expressions used in news headlines.

作者信息

Adams Rachel C, Sumner Petroc, Vivian-Griffiths Solveiga, Barrington Amy, Williams Andrew, Boivin Jacky, Chambers Christopher D, Bott Lewis

机构信息

Cardiff University Brain Research Imaging Centre, Cardiff University.

School of Psychology, Cardiff University.

出版信息

J Exp Psychol Appl. 2017 Mar;23(1):1-14. doi: 10.1037/xap0000100. Epub 2016 Nov 3.

Abstract

[Correction Notice: An Erratum for this article was reported in Vol 23(1) of (see record 2016-59631-001). In the article, the fourth author was inadvertently omitted from the advance online version. Also, the second paragraph of the author note should have included the following: "Amy Barrington contributed to the design and data collection for Experiments 2 and 3. We thank the following undergraduate students for contributions to Experiment 1 and pilot work leading up to the project: Laura Benjamin, Cecily Donnelly, Cameron Dunlop, Rebecca Emerson, Rose Fisher, Laura Jones, Olivia Manship, Hannah McCarthy, Naomi Scott, Eliza Walwyn-Jones, Leanne Whelan, and Joe Wilton." All versions of this article have been corrected.] Science-related news stories can have a profound impact on how the public make decisions. The current study presents 4 experiments that examine how participants understand scientific expressions used in news headlines. The expressions concerned causal and correlational relationships between variables (e.g., "being breast fed children behave better"). Participants rated or ranked headlines according to the extent that one variable caused the other. Our results suggest that participants differentiate between 3 distinct categories of relationship: direct cause statements (e.g., "makes," "increases"), which were interpreted as the most causal; can cause statements (e.g., "can make," "can increase"); and moderate cause statements (e.g., "might cause," "linked," "associated with"), but do not consistently distinguish within the last group despite the logical distinction between cause and association. On the basis of this evidence, we make recommendations for appropriately communicating cause and effect in news headlines. (PsycINFO Database Record

摘要

[更正通知:本文的一份勘误已在《》第23卷第1期报道(见记录2016-59631-001)。在该文章中,第四作者在提前在线版本中被疏忽遗漏。此外,作者注释的第二段应包含以下内容:“艾米·巴林顿为实验2和实验3的设计和数据收集做出了贡献。我们感谢以下本科生对实验1以及项目前期试点工作所做的贡献:劳拉·本杰明、塞西莉·唐纳利、卡梅隆·邓洛普、丽贝卡·埃默森、罗斯·费舍尔、劳拉·琼斯、奥利维亚·曼斯菲尔德、汉娜·麦卡锡、娜奥米·斯科特、伊莱扎·瓦尔温-琼斯、莉安·惠兰和乔·威尔顿。”本文的所有版本均已更正。] 与科学相关的新闻报道会对公众的决策方式产生深远影响。当前的研究呈现了4个实验,这些实验考察了参与者如何理解新闻标题中使用的科学表述。这些表述涉及变量之间的因果关系和相关关系(例如,“母乳喂养的孩子表现更好”)。参与者根据一个变量导致另一个变量的程度对标题进行评分或排序。我们的结果表明,参与者区分出了3种不同类型的关系:直接因果陈述(例如,“使”“增加”),被解释为最具因果性;可能导致陈述(例如,“可能使”“可能增加”);以及适度因果陈述(例如,“可能导致”“与……有关联”“与……相关”),但尽管因果和关联之间存在逻辑区别,他们在最后一组中并未始终如一地进行区分。基于这一证据,我们对在新闻标题中恰当传达因果关系提出了建议。(《心理学文摘数据库记录》)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验