Suppr超能文献

脑电图与呼气末二氧化碳信号的互相关分析:存在缺失数据时的方法学问题及实际数据结果

A Cross-Correlational Analysis between Electroencephalographic and End-Tidal Carbon Dioxide Signals: Methodological Issues in the Presence of Missing Data and Real Data Results.

作者信息

Morelli Maria Sole, Giannoni Alberto, Passino Claudio, Landini Luigi, Emdin Michele, Vanello Nicola

机构信息

Institute of Life Science, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.

Research Center "E. Piaggio", University of Pisa, 56122 Pisa, Italy.

出版信息

Sensors (Basel). 2016 Oct 31;16(11):1828. doi: 10.3390/s16111828.

Abstract

Electroencephalographic (EEG) irreducible artifacts are common and the removal of corrupted segments from the analysis may be required. The present study aims at exploring the effects of different EEG Missing Data Segment (MDS) distributions on cross-correlation analysis, involving EEG and physiological signals. The reliability of cross-correlation analysis both at single subject and at group level as a function of missing data statistics was evaluated using dedicated simulations. Moreover, a Bayesian-based approach for combining the single subject results at group level by considering each subject's reliability was introduced. Starting from the above considerations, the cross-correlation function between EEG Global Field Power (GFP) in delta band and end-tidal CO₂ (PCO₂) during rest and voluntary breath-hold was evaluated in six healthy subjects. The analysis of simulated data results at single subject level revealed a worsening of precision and accuracy in the cross-correlation analysis in the presence of MDS. At the group level, a large improvement in the results' reliability with respect to single subject analysis was observed. The proposed Bayesian approach showed a slight improvement with respect to simple average results. Real data results were discussed in light of the simulated data tests and of the current physiological findings.

摘要

脑电图(EEG)不可约伪迹很常见,可能需要从分析中去除受损段。本研究旨在探讨不同脑电图缺失数据段(MDS)分布对涉及脑电图和生理信号的互相关分析的影响。使用专门的模拟评估了作为缺失数据统计函数的单受试者和组水平互相关分析的可靠性。此外,还引入了一种基于贝叶斯的方法,通过考虑每个受试者的可靠性在组水平上组合单受试者结果。基于上述考虑,在六名健康受试者中评估了静息和自愿屏气期间脑电图δ频段全局场功率(GFP)与呼气末二氧化碳(PCO₂)之间的互相关函数。单受试者水平的模拟数据结果分析表明,存在MDS时互相关分析的精度和准确性会变差。在组水平上,观察到结果可靠性相对于单受试者分析有很大提高。所提出的贝叶斯方法相对于简单平均结果有轻微改进。根据模拟数据测试和当前生理发现对实际数据结果进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a6b/5134487/97d432ddb37e/sensors-16-01828-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验