Suppr超能文献

自动且直接地从头皮 EEG 中识别眨眼成分。

Automatic and direct identification of blink components from scalp EEG.

机构信息

College of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2013 Aug 16;13(8):10783-801. doi: 10.3390/s130810783.

Abstract

Eye blink is an important and inevitable artifact during scalp electroencephalogram (EEG) recording. The main problem in EEG signal processing is how to identify eye blink components automatically with independent component analysis (ICA). Taking into account the fact that the eye blink as an external source has a higher sum of correlation with frontal EEG channels than all other sources due to both its location and significant amplitude, in this paper, we proposed a method based on correlation index and the feature of power distribution to automatically detect eye blink components. Furthermore, we prove mathematically that the correlation between independent components and scalp EEG channels can be translating directly from the mixing matrix of ICA. This helps to simplify calculations and understand the implications of the correlation. The proposed method doesn't need to select a template or thresholds in advance, and it works without simultaneously recording an electrooculography (EOG) reference. The experimental results demonstrate that the proposed method can automatically recognize eye blink components with a high accuracy on entire datasets from 15 subjects.

摘要

眨眼是头皮脑电图(EEG)记录中一个重要且不可避免的伪迹。在 EEG 信号处理中,主要问题是如何使用独立成分分析(ICA)自动识别眨眼成分。考虑到眨眼作为外部源,由于其位置和显著的振幅,与所有其他源相比,与额部 EEG 通道的相关性总和更高,因此,在本文中,我们提出了一种基于相关指数和功率分布特征的方法,用于自动检测眨眼成分。此外,我们从数学上证明了独立成分与头皮 EEG 通道之间的相关性可以直接从 ICA 的混合矩阵转换。这有助于简化计算并理解相关性的含义。所提出的方法不需要预先选择模板或阈值,也不需要同时记录眼电图(EOG)参考。实验结果表明,该方法可以在 15 名受试者的整个数据集上自动识别眨眼成分,准确率高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27fe/3812628/b36545886506/sensors-13-10783f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验