Department of Mathematics, The University of Tennessee at Chattanooga, TN, 37403, USA. Computer Science and Mathematics Division, Oak Ridge National Laboratory, One Bethel Valley Road, PO Box 2008, MS-6211, Oak Ridge, TN 37831-6211, USA.
Nanotechnology. 2016 Dec 2;27(48):484002. doi: 10.1088/0957-4484/27/48/484002. Epub 2016 Nov 7.
We present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. We use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, and refine first principles calculations to better describe the experimental data.
我们提出了一个使用高性能计算来确定针对计算模型的大型实验数据的逆优化问题的精确解的框架。我们展示了如何使用图像处理、数学正则化和层次建模来解决大数据上的复杂优化问题。我们还展示了如何通过为处理和正则化算法提供置信区域,使用模型和数据信息来进一步提高优化解决方案的准确性。我们使用该框架与软件包 SIMPHONIES 结合,分析了硅单晶中子散射实验的结果,并对第一性原理计算进行了优化,以更好地描述实验数据。