Suppr超能文献

定量磁化率成像(QSM)算法:数学原理与计算实现

Quantitative Susceptibility Mapping (QSM) Algorithms: Mathematical Rationale and Computational Implementations.

作者信息

Kee Youngwook, Liu Zhe, Zhou Liangdong, Dimov Alexey, Cho Junghun, de Rochefort Ludovic, Seo Jin Keun, Wang Yi

机构信息

Department of Radiology, Weill Cornell Medical College, New York, USA.

Department of Biomedical Engineering, Cornell University, Ithaca, USA.

出版信息

IEEE Trans Biomed Eng. 2017 Nov;64(11):2531-2545. doi: 10.1109/TBME.2017.2749298.

Abstract

Quantitative susceptibility mapping (QSM) solves the magnetic field-to-magnetization (tissue susceptibility) inverse problem under conditions of noisy and incomplete field data acquired using magnetic resonance imaging. Therefore, sophisticated algorithms are necessary to treat the ill-posed nature of the problem and are reviewed here. The forward problem is typically presented as an integral form, where the field is the convolution of the dipole kernel and tissue susceptibility distribution. This integral form can be equivalently written as a partial differential equation (PDE). Algorithmic challenges are to reduce streaking and shadow artifacts characterized by the fundamental solution of the PDE. Bayesian maximum a posteriori estimation can be employed to solve the inverse problem, where morphological and relevant biomedical knowledge (specific to the imaging situation) are used as priors. As the cost functions in Bayesian QSM framework are typically convex, solutions can be robustly computed using a gradient-based optimization algorithm. Moreover, one can not only accelerate Bayesian QSM, but also increase its effectiveness at reducing shadows using prior knowledge based preconditioners. Improving the efficiency of QSM is under active development, and a rigorous analysis of preconditioning needs to be carried out for further investigation.Quantitative susceptibility mapping (QSM) solves the magnetic field-to-magnetization (tissue susceptibility) inverse problem under conditions of noisy and incomplete field data acquired using magnetic resonance imaging. Therefore, sophisticated algorithms are necessary to treat the ill-posed nature of the problem and are reviewed here. The forward problem is typically presented as an integral form, where the field is the convolution of the dipole kernel and tissue susceptibility distribution. This integral form can be equivalently written as a partial differential equation (PDE). Algorithmic challenges are to reduce streaking and shadow artifacts characterized by the fundamental solution of the PDE. Bayesian maximum a posteriori estimation can be employed to solve the inverse problem, where morphological and relevant biomedical knowledge (specific to the imaging situation) are used as priors. As the cost functions in Bayesian QSM framework are typically convex, solutions can be robustly computed using a gradient-based optimization algorithm. Moreover, one can not only accelerate Bayesian QSM, but also increase its effectiveness at reducing shadows using prior knowledge based preconditioners. Improving the efficiency of QSM is under active development, and a rigorous analysis of preconditioning needs to be carried out for further investigation.

摘要

定量磁化率成像(QSM)在使用磁共振成像获取的噪声和不完整场数据的条件下,解决了从磁场到磁化强度(组织磁化率)的逆问题。因此,需要复杂的算法来处理该问题的不适定性,本文对此进行了综述。正向问题通常以积分形式呈现,其中场是偶极子核与组织磁化率分布的卷积。这种积分形式可以等效地写为偏微分方程(PDE)。算法面临的挑战是减少由PDE的基本解所表征的条纹和阴影伪影。可以采用贝叶斯最大后验估计来解决逆问题,其中形态学和相关生物医学知识(特定于成像情况)用作先验信息。由于贝叶斯QSM框架中的代价函数通常是凸的,因此可以使用基于梯度的优化算法稳健地计算解。此外,使用基于先验知识的预处理器,不仅可以加速贝叶斯QSM,还可以提高其减少阴影的有效性。QSM效率的提高正在积极开展中,需要对预处理进行严格分析以进行进一步研究。定量磁化率成像(QSM)在使用磁共振成像获取的噪声和不完整场数据的条件下,解决了从磁场到磁化强度(组织磁化率)的逆问题。因此,需要复杂的算法来处理该问题的不适定性,本文对此进行了综述。正向问题通常以积分形式呈现,其中场是偶极子核与组织磁化率分布的卷积。这种积分形式可以等效地写为偏微分方程(PDE)。算法面临的挑战是减少由PDE的基本解所表征的条纹和阴影伪影。可以采用贝叶斯最大后验估计来解决逆问题,其中形态学和相关生物医学知识(特定于成像情况)用作先验信息。由于贝叶斯QSM框架中的代价函数通常是凸的,因此可以使用基于梯度的优化算法稳健地计算解。此外,使用基于先验知识的预处理器,不仅可以加速贝叶斯QSM,还可以提高其减少阴影的有效性。QSM效率的提高正在积极开展中,需要对预处理进行严格分析以进行进一步研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验