Suppr超能文献

结核分枝杆菌 L,D-转肽酶 2 及其天然单体底物的生化和晶体学研究。

Biochemical and crystallographic studies of L,D-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate.

机构信息

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK.

Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania.

出版信息

Commun Biol. 2024 Sep 18;7(1):1173. doi: 10.1038/s42003-024-06785-3.

Abstract

The essential L,D-transpeptidase of Mycobacterium tuberculosis (Ldt) catalyses the formation of 3 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit Ldt have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus. The tetrapeptides were used in binding / turnover assays and biophysical studies on Ldt We determined a crystal structure of wild-type Ldt reacted with its natural substrate, the tetrapeptide monomer of the peptidoglycan layer. This structure shows formation of a thioester linking the catalytic cysteine and the donor substrate, reflecting an intermediate in the transpeptidase reaction; it informs on the mode of entrance of the donor substrate into the Ldt active site. The results will be useful in design of Ldt inhibitors, including those based on substrate binding interactions, a strategy successfully employed for other nucleophilic cysteine enzymes.

摘要

结核分枝杆菌(Ldt)的必需 L,D-转肽酶催化细胞壁肽聚糖中 3 个 3 交叉连接的形成,是开发抗结核治疗药物的靶点。由于缺乏其结合底物的知识,抑制 Ldt 的努力受到了阻碍。为了解决这一差距,我们通过过度生产肽聚糖囊来优化从棒状杆菌属细胞壁中分离天然二糖四肽单体。这些四肽肽被用于结合/周转测定和 Ldt 的生物物理研究。我们确定了与天然底物反应的野生型 Ldt 的晶体结构,即肽聚糖层的四肽单体。该结构显示了催化半胱氨酸和供体底物之间形成硫酯键,反映了转肽酶反应的中间产物;它说明了供体底物进入 Ldt 活性位点的方式。这些结果将有助于设计 Ldt 抑制剂,包括基于底物结合相互作用的抑制剂,这是一种成功应用于其他亲核半胱氨酸酶的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac5f/11410929/53b2cb514e6c/42003_2024_6785_Fig1_HTML.jpg

相似文献

2
Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin.
Cochrane Database Syst Rev. 2022 May 18;5(5):CD014841. doi: 10.1002/14651858.CD014841.pub2.
3
Binding and processing of β-lactam antibiotics by the transpeptidase Ldt from Mycobacterium tuberculosis.
FEBS J. 2017 Mar;284(5):725-741. doi: 10.1111/febs.14010. Epub 2017 Feb 8.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
5
6
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Xpert MTB/RIF Ultra assay for tuberculosis disease and rifampicin resistance in children.
Cochrane Database Syst Rev. 2022 Sep 6;9(9):CD013359. doi: 10.1002/14651858.CD013359.pub3.
8
Xpert MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance.
Cochrane Database Syst Rev. 2018 Aug 27;8(8):CD012768. doi: 10.1002/14651858.CD012768.pub2.
9
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.
10
Assembling of the Mycobacterium tuberculosis Cell Wall Core.
J Biol Chem. 2016 Sep 2;291(36):18867-79. doi: 10.1074/jbc.M116.739227. Epub 2016 Jul 14.

本文引用的文献

1
High-throughput screen with the l,d-transpeptidase Ldt of reveals novel classes of covalently reacting inhibitors.
Chem Sci. 2023 May 30;14(26):7262-7278. doi: 10.1039/d2sc06858c. eCollection 2023 Jul 5.
3
Allosteric cooperation in β-lactam binding to a non-classical transpeptidase.
Elife. 2022 Apr 27;11:e73055. doi: 10.7554/eLife.73055.
4
An oral SARS-CoV-2 M inhibitor clinical candidate for the treatment of COVID-19.
Science. 2021 Dec 24;374(6575):1586-1593. doi: 10.1126/science.abl4784. Epub 2021 Nov 2.
5
A review of the latest research on M targeting SARS-COV inhibitors.
RSC Med Chem. 2021 Apr 14;12(7):1026-1036. doi: 10.1039/d1md00066g. eCollection 2021 Jul 21.
6
LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers.
FEBS J. 2022 Aug;289(16):4718-4730. doi: 10.1111/febs.16066. Epub 2021 Jun 22.
7
Global Tuberculosis Report 2020 - Reflections on the Global TB burden, treatment and prevention efforts.
Int J Infect Dis. 2021 Dec;113 Suppl 1(Suppl 1):S7-S12. doi: 10.1016/j.ijid.2021.02.107. Epub 2021 Mar 11.
9
β-lactam antibiotics: An overview from a medicinal chemistry perspective.
Eur J Med Chem. 2020 Dec 15;208:112829. doi: 10.1016/j.ejmech.2020.112829. Epub 2020 Sep 16.
10
Substrate and Stereochemical Control of Peptidoglycan Cross-Linking by Transpeptidation by PBP1B.
J Am Chem Soc. 2020 Mar 18;142(11):5034-5048. doi: 10.1021/jacs.9b08822. Epub 2020 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验