Suppr超能文献

细胞不对称起源中细胞骨架的手性

Chirality of the cytoskeleton in the origins of cellular asymmetry.

作者信息

Satir Peter

机构信息

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA

出版信息

Philos Trans R Soc Lond B Biol Sci. 2016 Dec 19;371(1710). doi: 10.1098/rstb.2015.0408.

Abstract

Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior-posterior cell and tissue axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

摘要

真核细胞细胞骨架的两个重要组成部分,肌动蛋白微丝和微管(MTs)的自组装产生了一种手性的极性细丝。正如细菌鞭毛一样,在肌动蛋白微丝中,螺旋方向对组装过程和运动性很重要。对于微管来说,细胞内的极性取向至关重要。这些元件在细胞质中的排列产生了涌现特性,包括细胞分化和特化的潜力。在基体和中心粒中发现了具有特征性手性的复杂微管;这种手性在纤毛中得以保留。在运动性纤毛中,它反映在有效冲程的方向上。基体或纤毛在细胞表面的定位取决于极性蛋白。在进化过程中,生存部分取决于通过微管和肌动蛋白丝细胞骨架的取向以及基体的手性传递给细胞的全局极性信息,以确定在定义的前后细胞和组织轴内的左右坐标。本文是主题为“左右不对称中的挑衅性问题”的特刊的一部分。

相似文献

1
Chirality of the cytoskeleton in the origins of cellular asymmetry.
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 19;371(1710). doi: 10.1098/rstb.2015.0408.
2
Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.
Cold Spring Harb Perspect Biol. 2014 Sep 2;6(9):a016030. doi: 10.1101/cshperspect.a016030.
3
Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis.
Plant Cell. 2011 Jun;23(6):2302-13. doi: 10.1105/tpc.111.087940. Epub 2011 Jun 21.
6
Microtubules: From understanding their dynamics to using them as potential therapeutic targets.
J Cell Physiol. 2019 Jun;234(6):7923-7937. doi: 10.1002/jcp.27978. Epub 2018 Dec 10.
8
Microtubules and actin filaments direct nuclear movement during the polarisation of Marchantia spore cells.
Development. 2024 Oct 15;151(20). doi: 10.1242/dev.202823. Epub 2024 Jul 23.
9
Live cell imaging of the cytoskeleton.
Methods Enzymol. 2012;505:203-17. doi: 10.1016/B978-0-12-388448-0.00019-X.
10
Rotating pigment cells exhibit an intrinsic chirality.
Genes Cells. 2015 Jan;20(1):29-35. doi: 10.1111/gtc.12194. Epub 2014 Oct 27.

引用本文的文献

1
Plakophilin 3 Is Involved in Basal Body Docking in Multiciliated Cells.
Int J Mol Sci. 2025 Jun 4;26(11):5381. doi: 10.3390/ijms26115381.
2
Biomechanical Modeling of Cell Chirality and Symmetry Breaking of Biological Systems.
Mechanobiol Med. 2024 Mar;2(1). doi: 10.1016/j.mbm.2024.100038. Epub 2024 Jan 5.
3
Scanning electron microscopy of human islet cilia.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2302624120. doi: 10.1073/pnas.2302624120. Epub 2023 May 19.
4
Cell jamming regulates epithelial chiral morphogenesis.
J Biomech. 2023 Jan;147:111435. doi: 10.1016/j.jbiomech.2023.111435. Epub 2023 Jan 5.
5
Tuning organic crystal chirality by the molar masses of tailored polymeric additives.
Nat Commun. 2021 Nov 25;12(1):6841. doi: 10.1038/s41467-021-27236-1.
6
Bacterial Filamentation Drives Colony Chirality.
mBio. 2021 Dec 21;12(6):e0154221. doi: 10.1128/mBio.01542-21. Epub 2021 Nov 2.
8
Epithelial Cell Chirality Revealed by Three-Dimensional Spontaneous Rotation.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12188-12193. doi: 10.1073/pnas.1805932115. Epub 2018 Nov 14.
9
Introduction to provocative questions in left-right asymmetry.
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 19;371(1710). doi: 10.1098/rstb.2015.0399.

本文引用的文献

1
Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog.
Curr Biol. 2016 Mar 7;26(5):654-60. doi: 10.1016/j.cub.2015.12.071. Epub 2016 Feb 25.
3
A new protocol to accurately determine microtubule lattice seam location.
J Struct Biol. 2015 Nov;192(2):245-54. doi: 10.1016/j.jsb.2015.09.015. Epub 2015 Sep 28.
5
Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa.
EMBO Rep. 2014 Sep;15(9):926-37. doi: 10.15252/embr.201438972. Epub 2014 Aug 22.
6
Evolutionary implications of localization of the signaling scaffold protein parafusin to both cilia and the nucleus.
Cell Biol Int. 2015 Feb;39(2):136-45. doi: 10.1002/cbin.10337. Epub 2014 Jul 28.
7
Structure of a kinesin-tubulin complex and implications for kinesin motility.
Nat Struct Mol Biol. 2013 Aug;20(8):1001-7. doi: 10.1038/nsmb.2624. Epub 2013 Jul 21.
8
Dissecting the cellular functions of plant microtubules using mutant tubulins.
Cytoskeleton (Hoboken). 2013 Apr;70(4):191-200. doi: 10.1002/cm.21099. Epub 2013 Mar 21.
9
Molecular mechanisms in spindle positioning: structures and new concepts.
Curr Opin Cell Biol. 2012 Dec;24(6):816-24. doi: 10.1016/j.ceb.2012.10.005. Epub 2012 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验