Suppr超能文献

细菌丝状生长导致菌落的手性。

Bacterial Filamentation Drives Colony Chirality.

机构信息

Department of Bioengineering, Stanford Universitygrid.168010.e, Stanford, California, USA.

Living Systems Institute, University of Exeter, Exeter, United Kingdom.

出版信息

mBio. 2021 Dec 21;12(6):e0154221. doi: 10.1128/mBio.01542-21. Epub 2021 Nov 2.

Abstract

Chirality is ubiquitous in nature, with consequences at the cellular and tissue scales. As Escherichia coli colonies expand radially, an orthogonal component of growth creates a pinwheel-like pattern that can be revealed by fluorescent markers. To elucidate the mechanistic basis of this colony chirality, we investigated its link to left-handed, single-cell twisting during E. coli elongation. While chemical and genetic manipulation of cell width altered single-cell twisting handedness, colonies ceased to be chiral rather than switching handedness, and anaerobic growth altered colony chirality without affecting single-cell twisting. Chiral angle increased with increasing temperature even when growth rate decreased. Unifying these findings, we discovered that colony chirality was associated with the propensity for cell filamentation. Inhibition of cell division accentuated chirality under aerobic growth and generated chirality under anaerobic growth. Thus, regulation of cell division is intrinsically coupled to colony chirality, providing a mechanism for tuning macroscale spatial patterning. Chiral objects, such as amino acids, are distinguishable from their mirror image. For living systems, the fundamental mechanisms relating cellular handedness to chirality at the multicellular scale remain largely mysterious. Here, we use chemical, genetic, and environmental perturbations of Escherichia coli to investigate whether pinwheel patterns in bacterial colonies are directly linked to single-cell growth behaviors. We discover that chirality can be abolished without affecting single-cell twisting; instead, the degree of chirality was linked to the proportion of highly elongated cells at the colony edge. Inhibiting cell division boosted the degree of chirality during aerobic growth and even introduced chirality to otherwise achiral colonies during anaerobic growth. These findings reveal a fascinating connection between cell division and macroscopic colony patterning.

摘要

手性在自然界中无处不在,其影响涉及细胞和组织层面。当大肠杆菌菌落呈放射状扩张时,生长的正交分量会形成一种风车状的图案,这种图案可以通过荧光标记来揭示。为了阐明这种菌落手性的机制基础,我们研究了它与大肠杆菌伸长过程中左手单细胞扭曲的关系。虽然细胞宽度的化学和遗传操作改变了单细胞扭曲的手性,但菌落不再具有手性,而不是改变手性,并且厌氧生长改变了菌落手性,而不影响单细胞扭曲。即使生长速率降低,手性角度也会随着温度的升高而增加。将这些发现统一起来,我们发现菌落手性与细胞丝状化的倾向有关。有氧生长时,细胞分裂的抑制会增强手性,而厌氧生长时会产生手性。因此,细胞分裂的调节与菌落手性内在相关,为调节宏观空间模式提供了一种机制。手性物体,如氨基酸,与其镜像可以区分开来。对于生命系统,将细胞手性与多细胞尺度上的手性相关的基本机制在很大程度上仍然是神秘的。在这里,我们使用大肠杆菌的化学、遗传和环境扰动来研究细菌菌落中的风车图案是否与单细胞生长行为直接相关。我们发现,在不影响单细胞扭曲的情况下,可以消除手性;相反,手性的程度与菌落边缘高度伸长细胞的比例有关。有氧生长时抑制细胞分裂会提高手性程度,甚至在厌氧生长时将手性引入原本无手性的菌落中。这些发现揭示了细胞分裂与宏观菌落模式之间引人入胜的联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca3/8561393/ef0cf19ae9bc/mbio.01542-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验