Suppr超能文献

衣原体疫苗合理设计的考量因素。

Considerations for the rational design of a Chlamydia vaccine.

作者信息

Liang Steven, Bulir David, Kaushic Charu, Mahony James

机构信息

a Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada.

b St. Joseph's Research Institute , St. Joseph's Healthcare , Hamilton , Ontario , Canada.

出版信息

Hum Vaccin Immunother. 2017 Apr 3;13(4):831-835. doi: 10.1080/21645515.2016.1252886. Epub 2016 Nov 11.

Abstract

Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Remarkable progress in vaccine research over the past six decades has led to the advancement of novel C. trachomatis vaccine candidates into clinical trials. However, many questions regarding the role of specific cellular populations and molecular mechanisms in protective immunity against human C. trachomatis genital tract infections remain unanswered. Biomarkers of vaccine induced protective immunity are elusive in humans, while a cautionary message on the translatability of data obtained from current animal models has emanated from vaccine research and development efforts against other important human pathogens. In this commentary, we highlight recent advances in Chlamydia vaccine development and discuss their implications in the context of a rational approach to the design of a human C. trachomatis vaccine.

摘要

沙眼衣原体是可预防失明的主要病因,也是最常见的细菌性性传播感染病原体。在过去六十年里,疫苗研究取得了显著进展,新型沙眼衣原体疫苗候选物已进入临床试验阶段。然而,关于特定细胞群体和分子机制在针对人类沙眼衣原体生殖道感染的保护性免疫中所起作用的许多问题仍未得到解答。疫苗诱导的保护性免疫的生物标志物在人类中难以捉摸,而针对其他重要人类病原体的疫苗研发工作也发出了关于从当前动物模型获得的数据的可转化性的警示信息。在这篇评论中,我们重点介绍了衣原体疫苗开发的最新进展,并在合理设计人类沙眼衣原体疫苗的背景下讨论了这些进展的意义。

相似文献

1
Considerations for the rational design of a Chlamydia vaccine.
Hum Vaccin Immunother. 2017 Apr 3;13(4):831-835. doi: 10.1080/21645515.2016.1252886. Epub 2016 Nov 11.
3
Update on Chlamydia trachomatis Vaccinology.
Clin Vaccine Immunol. 2017 Apr 5;24(4). doi: 10.1128/CVI.00543-16. Print 2017 Apr.
4
Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis.
Expert Rev Vaccines. 2016 Aug;15(8):977-88. doi: 10.1586/14760584.2016.1161510. Epub 2016 Mar 21.
5
Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects.
Expert Rev Vaccines. 2018 Jan;17(1):57-69. doi: 10.1080/14760584.2018.1417044. Epub 2017 Dec 21.
6
Towards a Chlamydia trachomatis vaccine: how close are we?
Future Microbiol. 2010 Dec;5(12):1833-56. doi: 10.2217/fmb.10.148.
7
Status of vaccine research and development of vaccines for Chlamydia trachomatis infection.
Vaccine. 2019 Nov 28;37(50):7289-7294. doi: 10.1016/j.vaccine.2017.01.023. Epub 2017 Jan 19.
8
Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine.
Nat Rev Immunol. 2005 Feb;5(2):149-61. doi: 10.1038/nri1551.
9
Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine.
Curr Top Microbiol Immunol. 2018;412:217-237. doi: 10.1007/82_2016_6.

引用本文的文献

1
Profile of vaccine research: A bibliometric analysis.
Hum Vaccin Immunother. 2025 Dec;21(1):2459459. doi: 10.1080/21645515.2025.2459459. Epub 2025 Feb 5.
2
Autophagy: the misty lands of infection.
Front Cell Infect Microbiol. 2024 Sep 6;14:1442995. doi: 10.3389/fcimb.2024.1442995. eCollection 2024.
3
Insights into Chlamydia Development and Host Cells Response.
Microorganisms. 2024 Jun 26;12(7):1302. doi: 10.3390/microorganisms12071302.
4
Intranasal delivery of OMVs decorated with antigens induces specific local and systemic immune responses.
Hum Vaccin Immunother. 2024 Dec 31;20(1):2330768. doi: 10.1080/21645515.2024.2330768. Epub 2024 Mar 22.
5
vaccines for genital infections: where are we and how far is there to go?
Expert Rev Vaccines. 2021 Apr;20(4):421-435. doi: 10.1080/14760584.2021.1899817. Epub 2021 Apr 28.
6
Efficacy of a prepared tissue culture-adapted vaccine against experimentally in mice.
Vet World. 2020 Nov;13(11):2546-2554. doi: 10.14202/vetworld.2020.2546-2554. Epub 2020 Nov 28.
8
Applying lessons from human papillomavirus vaccines to the development of vaccines against Chlamydia trachomatis.
Expert Rev Vaccines. 2018 Nov;17(11):959-966. doi: 10.1080/14760584.2018.1534587. Epub 2018 Oct 20.
10
Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles.
Expert Rev Vaccines. 2018 Mar;17(3):217-227. doi: 10.1080/14760584.2018.1435279. Epub 2018 Feb 6.

本文引用的文献

1
IFNγ is Required for Optimal Antibody-Mediated Immunity against Genital Chlamydia Infection.
Infect Immun. 2016 Nov;84(11):3232-3242. doi: 10.1128/IAI.00749-16. Epub 2016 Sep 6.
3
Tissue-Resident T Cells as the Central Paradigm of Chlamydia Immunity.
Infect Immun. 2016 Mar 24;84(4):868-873. doi: 10.1128/IAI.01378-15. Print 2016 Apr.
5
The contribution of Chlamydia-specific CD8⁺ T cells to upper genital tract pathology.
Immunol Cell Biol. 2016 Feb;94(2):208-12. doi: 10.1038/icb.2015.74. Epub 2015 Sep 1.
7
Pelvic inflammatory disease.
N Engl J Med. 2015 May 21;372(21):2039-48. doi: 10.1056/NEJMra1411426.
9
Buccal and sublingual vaccine delivery.
J Control Release. 2014 Sep 28;190:580-92. doi: 10.1016/j.jconrel.2014.05.060. Epub 2014 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验