Suppr超能文献

代谢紊乱中的线粒体功能障碍和氧化应激——迈向基于线粒体的治疗策略的一步。

Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies.

机构信息

Department of Biotechnology and Bioinformatics, Sri Guru Gobind Singh College, Sector-26, Chandigarh 160019, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.

UGC Centre of Excellence in Nano applications, Panjab University, UIPS building, Chandigarh 160014, India.

出版信息

Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1066-1077. doi: 10.1016/j.bbadis.2016.11.010. Epub 2016 Nov 9.

Abstract

Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, including ATP production, intracellular Ca regulation, reactive oxygen species production & scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been made in understanding mitochondrial structure, function and their physiology in metabolic syndromes such as diabetes, obesity, stroke and hypertension, and heart disease. Further, progress has also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight the recent progress on the mitochondrial role in metabolic syndromes and also summarize the progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.

摘要

线粒体是细胞的动力源,参与细胞的基本功能,包括 ATP 产生、细胞内 Ca 调节、活性氧物种的产生和清除、细胞凋亡的调节以及半胱氨酸蛋白酶家族的激活。线粒体功能障碍和氧化应激在衰老、癌症、与年龄相关的神经退行性疾病和代谢综合征中起着重要作用。在过去的十年中,人们在理解线粒体的结构、功能及其在代谢综合征(如糖尿病、肥胖、中风和高血压以及心脏病)中的生理学方面取得了巨大进展。此外,在开发治疗策略方面也取得了进展,包括生活方式干预(健康饮食和定期锻炼)、药物策略和靶向线粒体的方法。这些策略主要集中在减少线粒体功能障碍和氧化应激,以及维持代谢综合征中线粒体的质量。本文的目的是强调线粒体在代谢综合征中的作用的最新进展,并总结作为治疗代谢综合征的治疗靶点的靶向线粒体的分子的进展。本文是由 P. Hemachandra Reddy 编辑的题为“糖尿病/肥胖和危急疾病谱中的氧化应激和线粒体质量”的特刊的一部分。

相似文献

1
Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies.
Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1066-1077. doi: 10.1016/j.bbadis.2016.11.010. Epub 2016 Nov 9.
2
Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders.
Prog Mol Biol Transl Sci. 2017;146:13-46. doi: 10.1016/bs.pmbts.2016.12.012. Epub 2017 Feb 1.
3
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
4
Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration.
Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1132-1146. doi: 10.1016/j.bbadis.2016.06.015. Epub 2016 Jun 21.
5
The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance.
Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1106-1114. doi: 10.1016/j.bbadis.2016.07.019. Epub 2016 Aug 4.
8
Pathogenic mitochondrial dysfunction and metabolic abnormalities.
Biochem Pharmacol. 2021 Nov;193:114809. doi: 10.1016/j.bcp.2021.114809. Epub 2021 Oct 19.
9
Mitochondria in metabolic disease: getting clues from proteomic studies.
Proteomics. 2014 Mar;14(4-5):452-66. doi: 10.1002/pmic.201300376.
10
Aldosterone, mitochondria and regulation of cardiovascular metabolic disease.
J Endocrinol. 2024 Sep 13;263(1). doi: 10.1530/JOE-23-0350. Print 2024 Oct 1.

引用本文的文献

1
The role of reactive oxygen species in the transformation from prostatitis to prostate cancer: a review.
Front Immunol. 2025 Aug 22;16:1662792. doi: 10.3389/fimmu.2025.1662792. eCollection 2025.
2
The Pathophysiological Role of Mitochondrial Oxidative Stress in Rheumatic Diseases.
J Inflamm Res. 2025 Sep 1;18:12021-12044. doi: 10.2147/JIR.S534574. eCollection 2025.
3
Phloridzin Mitigates Gorham-Stout Disease by Dual Inhibition of Osteoclastogenesis Related to the Ca Signaling Pathway and Vascular Proliferation.
ACS Omega. 2025 Aug 18;10(33):37740-37760. doi: 10.1021/acsomega.5c04384. eCollection 2025 Aug 26.
6
Concurrence of clozapine-induced diabetic ketoacidosis and neuroleptic malignant syndrome: A case report.
Medicine (Baltimore). 2025 Aug 22;104(34):e44172. doi: 10.1097/MD.0000000000044172.
7
The Inflammatory Bridge Between Type 2 Diabetes and Neurodegeneration: A Molecular Perspective.
Int J Mol Sci. 2025 Aug 5;26(15):7566. doi: 10.3390/ijms26157566.
9
Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells.
Animals (Basel). 2025 Aug 7;15(15):2324. doi: 10.3390/ani15152324.
10
Bioactive Nanomaterials: Comprehensive Monitoring and Regulation of Acute Pancreatitis Induced Acute Lung Injury.
Int J Nanomedicine. 2025 Jul 31;20:9517-9558. doi: 10.2147/IJN.S514653. eCollection 2025.

本文引用的文献

1
Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links.
J Alzheimers Dis. 2016 Sep 6;54(2):427-43. doi: 10.3233/JAD-160527.
2
Targeting Mitochondria in Cardiovascular Diseases.
Curr Pharm Des. 2016;22(37):5698-5717. doi: 10.2174/1381612822666160822150243.
3
Calorie restriction in humans: An update.
Ageing Res Rev. 2017 Oct;39:36-45. doi: 10.1016/j.arr.2016.08.005. Epub 2016 Aug 17.
4
Application of Mitochondria-Targeted Pharmaceuticals for the Treatment of Heart Disease.
Curr Pharm Des. 2016;22(31):4763-4779. doi: 10.2174/1381612822666160629070914.
5
Role of Sirtuins in Regulating Pathophysiology of the Heart.
Trends Endocrinol Metab. 2016 Aug;27(8):563-573. doi: 10.1016/j.tem.2016.04.015. Epub 2016 May 19.
8
Mitochondrial Dynamics and Metabolic Regulation.
Trends Endocrinol Metab. 2016 Feb;27(2):105-117. doi: 10.1016/j.tem.2015.12.001. Epub 2016 Jan 2.
9
Calorie restriction leads to greater Akt2 activity and glucose uptake by insulin-stimulated skeletal muscle from old rats.
Am J Physiol Regul Integr Comp Physiol. 2016 Mar 1;310(5):R449-58. doi: 10.1152/ajpregu.00449.2015. Epub 2016 Jan 6.
10
Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy.
Free Radic Biol Med. 2016 Jan;90:12-23. doi: 10.1016/j.freeradbiomed.2015.11.013. Epub 2015 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验