Leitão Ana Lúcia, Costa Marina C, Enguita Francisco J
Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal; MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal.
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
J Biotechnol. 2017 Jan 10;241:50-60. doi: 10.1016/j.jbiotec.2016.11.009. Epub 2016 Nov 11.
Genome engineering is a branch of modern biotechnology composed of a cohort of protocols designed to construct and modify a genotype with the main objective of giving rise to a desired phenotype. Conceptually, genome engineering is based on the so called genome editing technologies, a group of genetic techniques that allow either to delete or to insert genetic information in a particular genomic locus. Ten years ago, genome editing tools were limited to virus-driven integration and homologous DNA recombination. However, nowadays the uprising of programmable nucleases is rapidly changing this paradigm. There are two main families of modern tools for genome editing depending on the molecule that controls the specificity of the system and drives the editor machinery to its place of action. Enzymes such as Zn-finger and TALEN nucleases are protein-driven genome editors; while CRISPR system is a nucleic acid-guided editing system. Genome editing techniques are still not widely applied for the design of new compounds with pharmacological activity, but they are starting to be considered as promising tools for rational genome manipulation in biotechnology applications. In this review we will discuss the potential applications of programmable nucleases for the metabolic engineering of secondary metabolites with biological activity.
基因组工程是现代生物技术的一个分支,由一系列旨在构建和修饰基因型的实验方案组成,其主要目标是产生期望的表型。从概念上讲,基因组工程基于所谓的基因组编辑技术,这是一组遗传技术,可在特定基因组位点删除或插入遗传信息。十年前,基因组编辑工具仅限于病毒驱动的整合和同源DNA重组。然而,如今可编程核酸酶的兴起正在迅速改变这一模式。根据控制系统特异性并将编辑机制驱动到其作用位点的分子,现代基因组编辑工具主要有两个家族。诸如锌指核酸酶和转录激活因子样效应物核酸酶等酶是蛋白质驱动的基因组编辑器;而CRISPR系统是一种核酸引导的编辑系统。基因组编辑技术尚未广泛应用于具有药理活性的新化合物设计,但它们正开始被视为生物技术应用中合理基因组操作的有前途工具。在本综述中,我们将讨论可编程核酸酶在具有生物活性的次生代谢产物代谢工程中的潜在应用。