文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

雷诺数和沃默斯利数对颅内动脉瘤血流动力学的影响。

Effects of Reynolds and Womersley Numbers on the Hemodynamics of Intracranial Aneurysms.

作者信息

Asgharzadeh Hafez, Borazjani Iman

机构信息

Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.

出版信息

Comput Math Methods Med. 2016;2016:7412926. doi: 10.1155/2016/7412926. Epub 2016 Oct 26.


DOI:10.1155/2016/7412926
PMID:27847544
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5101408/
Abstract

The effects of Reynolds and Womersley numbers on the hemodynamics of two simplified intracranial aneurysms (IAs), that is, sidewall and bifurcation IAs, and a patient-specific IA are investigated using computational fluid dynamics. For this purpose, we carried out three numerical experiments for each IA with various Reynolds (Re = 145.45 to 378.79) and Womersley (Wo = 7.4 to 9.96) numbers. Although the dominant flow feature, which is the vortex ring formation, is similar for all test cases here, the propagation of the vortex ring is controlled by both Re and Wo in both simplified IAs (bifurcation and sidewall) and the patient-specific IA. The location of the vortex ring in all tested IAs is shown to be proportional to Re/Wo which is in agreement with empirical formulations for the location of a vortex ring in a tank. In sidewall IAs, the oscillatory shear index is shown to increase with Wo and 1/Re because the vortex reached the distal wall later in the cycle (higher resident time). However, this trend was not observed in the bifurcation IA because the stresses were dominated by particle trapping structures, which were absent at low Re = 151.51 in contrast to higher Re = 378.79.

摘要

利用计算流体动力学研究了雷诺数和沃默斯利数对两种简化颅内动脉瘤(IA),即侧壁型和分叉型IA以及一个患者特异性IA血流动力学的影响。为此,我们针对每个IA进行了三次数值实验,采用了不同的雷诺数(Re = 145.45至378.79)和沃默斯利数(Wo = 7.4至9.96)。尽管此处所有测试案例的主导流动特征,即涡环形成,是相似的,但在简化的IA(分叉型和侧壁型)以及患者特异性IA中,涡环的传播受Re和Wo两者控制。所有测试IA中涡环的位置显示与Re/Wo成正比,这与水箱中涡环位置的经验公式一致。在侧壁型IA中,振荡剪切指数显示随Wo和1/Re增加,因为涡环在周期后期到达远端壁(驻留时间更长)。然而,在分叉型IA中未观察到这种趋势,因为应力由颗粒捕获结构主导,与较高的Re = 378.79相比,在低Re = 151.51时不存在这种结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/4dc59e3dc830/CMMM2016-7412926.015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/396b5035f43a/CMMM2016-7412926.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/0ce596a5c16b/CMMM2016-7412926.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/96062b4d9b55/CMMM2016-7412926.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/1f219bc669c2/CMMM2016-7412926.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/3fa2038869e9/CMMM2016-7412926.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/144afc59d2d5/CMMM2016-7412926.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/62717fd58b22/CMMM2016-7412926.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/dc340e030dbb/CMMM2016-7412926.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/cf86939f00bf/CMMM2016-7412926.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/7aa23dcd26cb/CMMM2016-7412926.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/65d8b9c8e0af/CMMM2016-7412926.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/14f496b04a54/CMMM2016-7412926.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/db7ddaa10f69/CMMM2016-7412926.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/e24c5a82ec4e/CMMM2016-7412926.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/4dc59e3dc830/CMMM2016-7412926.015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/396b5035f43a/CMMM2016-7412926.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/0ce596a5c16b/CMMM2016-7412926.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/96062b4d9b55/CMMM2016-7412926.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/1f219bc669c2/CMMM2016-7412926.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/3fa2038869e9/CMMM2016-7412926.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/144afc59d2d5/CMMM2016-7412926.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/62717fd58b22/CMMM2016-7412926.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/dc340e030dbb/CMMM2016-7412926.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/cf86939f00bf/CMMM2016-7412926.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/7aa23dcd26cb/CMMM2016-7412926.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/65d8b9c8e0af/CMMM2016-7412926.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/14f496b04a54/CMMM2016-7412926.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/db7ddaa10f69/CMMM2016-7412926.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/e24c5a82ec4e/CMMM2016-7412926.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/5101408/4dc59e3dc830/CMMM2016-7412926.015.jpg

相似文献

[1]
Effects of Reynolds and Womersley Numbers on the Hemodynamics of Intracranial Aneurysms.

Comput Math Methods Med. 2016

[2]
Pulsatile flow effects on the hemodynamics of intracranial aneurysms.

J Biomech Eng. 2010-11

[3]
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

Comput Math Methods Med. 2016

[4]
Identification of vortex structures in a cohort of 204 intracranial aneurysms.

J R Soc Interface. 2017-5

[5]
Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study.

Neurosurgery. 2009-4

[6]
Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics.

J Biomech Eng. 2001-10

[7]
Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms.

Surg Neurol. 2009-11

[8]
Numerical Analysis of Bifurcation Angles and Branch Patterns in Intracranial Aneurysm Formation.

Neurosurgery. 2019-7-1

[9]
MR-based computational fluid dynamics with patient-specific boundary conditions for the initiation of a sidewall aneurysm of a basilar artery.

Magn Reson Med Sci. 2015

[10]
Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.

Cerebrovasc Dis. 2012-8-1

引用本文的文献

[1]
Fluid dynamics in intracranial aneurysms treated with flow-diverting stents: effect of multiple geometrical parameters.

J Fluid Mech. 2023-10-23

[2]
Quantifying CSF Dynamics disruption in idiopathic normal pressure hydrocephalus using phase lag between transmantle pressure and volumetric flow rate.

Brain Multiphys. 2024-12

[3]
Evaluation of unruptured aneurysm scoring systems and ratios in subarachnoid hemorrhage patients with multiple intracranial aneurysms.

Surg Neurol Int. 2023-10-20

[4]
Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model.

Front Cardiovasc Med. 2021-12-23

[5]
The effect of Dean, Reynolds and Womersley numbers on the flow in a spherical cavity on a curved round pipe. Part 2. The haemodynamics of intracranial aneurysms treated with flow-diverting stents.

J Fluid Mech. 2021-5-25

[6]
Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis.

Front Physiol. 2021-9-6

[7]
The effect of Dean, Reynolds, and Womersley number on the flow in a spherical cavity on a curved round pipe. Part 1. Fluid mechanics in the cavity as a canonical flow representing intracranial aneurysms.

J Fluid Mech. 2021-5-25

[8]
Numerical study on the energy cascade of pulsatile Newtonian and power-law flow models in an ICA bifurcation.

PLoS One. 2021

[9]
A Simple Flow Classification Parameter Can Discriminate Rupture Status in Intracranial Aneurysms.

Neurosurgery. 2020-10-15

[10]
Novel Models for Identification of the Ruptured Aneurysm in Patients with Subarachnoid Hemorrhage with Multiple Aneurysms.

AJNR Am J Neuroradiol. 2019-10-24

本文引用的文献

[1]
The Role of Shape and Heart Rate on the Performance of the Left Ventricle.

J Biomech Eng. 2015-11

[2]
A review of fluid-structure interaction simulations of prosthetic heart valves.

J Long Term Eff Med Implants. 2015

[3]
Transitional flow in aneurysms and the computation of haemodynamic parameters.

J R Soc Interface. 2015-4-6

[4]
Unexpected trapping of particles at a T junction.

Proc Natl Acad Sci U S A. 2014-3-17

[5]
Quantifying the large-scale hemodynamics of intracranial aneurysms.

AJNR Am J Neuroradiol. 2014-2

[6]
A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.

Comput Fluids. 2013-4-1

[7]
Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation.

Ann Biomed Eng. 2013-4-20

[8]
High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis.

AJNR Am J Neuroradiol. 2014-7

[9]
Flow diversion treatment: intra-aneurismal blood flow velocity and WSS reduction are parameters to predict aneurysm thrombosis.

Acta Neurochir (Wien). 2012-8-29

[10]
Counterpoint: realizing the clinical utility of computational fluid dynamics--closing the gap.

AJNR Am J Neuroradiol. 2012-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索