文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在真实的全心脏模型中,顺序耦合显示流体动力学对心肌变形的影响较小。

Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model.

作者信息

Brenneisen Jochen, Daub Anna, Gerach Tobias, Kovacheva Ekaterina, Huetter Larissa, Frohnapfel Bettina, Dössel Olaf, Loewe Axel

机构信息

Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany.

出版信息

Front Cardiovasc Med. 2021 Dec 23;8:768548. doi: 10.3389/fcvm.2021.768548. eCollection 2021.


DOI:10.3389/fcvm.2021.768548
PMID:35004885
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8733159/
Abstract

The human heart is a masterpiece of the highest complexity coordinating multi-physics aspects on a multi-scale range. Thus, modeling the cardiac function to reproduce physiological characteristics and diseases remains challenging. Especially the complex simulation of the blood's hemodynamics and its interaction with the myocardial tissue requires a high accuracy of the underlying computational models and solvers. These demanding aspects make whole-heart fully-coupled simulations computationally highly expensive and call for simpler but still accurate models. While the mechanical deformation during the heart cycle drives the blood flow, less is known about the feedback of the blood flow onto the myocardial tissue. To solve the fluid-structure interaction problem, we suggest a cycle-to-cycle coupling of the structural deformation and the fluid dynamics. In a first step, the displacement of the endocardial wall in the mechanical simulation serves as a unidirectional boundary condition for the fluid simulation. After a complete heart cycle of fluid simulation, a spatially resolved pressure factor (PF) is extracted and returned to the next iteration of the solid mechanical simulation, closing the loop of the iterative coupling procedure. All simulations were performed on an individualized whole heart geometry. The effect of the sequential coupling was assessed by global measures such as the change in deformation and-as an example of diagnostically relevant information-the particle residence time. The mechanical displacement was up to 2 mm after the first iteration. In the second iteration, the deviation was in the sub-millimeter range, implying that already one iteration of the proposed cycle-to-cycle coupling is sufficient to converge to a coupled limit cycle. Cycle-to-cycle coupling between cardiac mechanics and fluid dynamics can be a promising approach to account for fluid-structure interaction with low computational effort. In an individualized healthy whole-heart model, one iteration sufficed to obtain converged and physiologically plausible results.

摘要

人类心脏是一个高度复杂的杰作,在多尺度范围内协调多物理方面。因此,对心脏功能进行建模以再现生理特征和疾病仍然具有挑战性。特别是血液血流动力学及其与心肌组织相互作用的复杂模拟需要基础计算模型和求解器具有高精度。这些苛刻的方面使得全心全耦合模拟在计算上成本高昂,因此需要更简单但仍然准确的模型。虽然心动周期中的机械变形驱动血流,但关于血流对心肌组织的反馈知之甚少。为了解决流固耦合问题,我们建议对结构变形和流体动力学进行逐周期耦合。第一步,力学模拟中心内膜壁的位移用作流体模拟的单向边界条件。在流体模拟完成一个完整的心动周期后,提取空间分辨压力因子(PF)并返回固体力学模拟的下一次迭代,从而闭合迭代耦合过程的循环。所有模拟均在个体化的全心几何模型上进行。通过诸如变形变化等全局测量以及作为诊断相关信息示例的粒子停留时间来评估顺序耦合的效果。第一次迭代后机械位移高达2毫米。在第二次迭代中,偏差在亚毫米范围内,这意味着所提出的逐周期耦合仅一次迭代就足以收敛到耦合极限环。心脏力学和流体动力学之间的逐周期耦合可能是一种以低计算量考虑流固耦合的有前途的方法。在个体化的健康全心模型中,一次迭代就足以获得收敛且符合生理的合理结果。

相似文献

[1]
Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model.

Front Cardiovasc Med. 2021-12-23

[2]
A novel mono-physics particle-based approach for the simulation of cardiovascular fluid-structure interaction problems.

Comput Methods Programs Biomed. 2024-3

[3]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[4]
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.

Cardiovasc Eng Technol. 2016-12

[5]
Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling.

J Biomech Eng. 2013-8

[6]
Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.

Cardiovasc Eng Technol. 2015-3

[7]
A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.

Med Phys. 2010-8

[8]
CFD simulation of flow through heart: a perspective review.

Comput Methods Biomech Biomed Engin. 2011

[9]
Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.

Med Eng Phys. 2013-9-1

[10]
A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.

Int J Numer Method Biomed Eng. 2017-8

引用本文的文献

[1]
Computational modelling of biological systems now and then: revisiting tools and visions from the beginning of the century.

Philos Trans A Math Phys Eng Sci. 2025-5-8

[2]
The role of computational methods in cardiovascular medicine: a narrative review.

Transl Pediatr. 2024-1-29

[3]
Global Sensitivity Analysis of Four Chamber Heart Hemodynamics Using Surrogate Models.

IEEE Trans Biomed Eng. 2022-10

本文引用的文献

[1]
A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation.

Comput Methods Appl Mech Eng. 2021-8-18

[2]
Understanding preload and preload reserve within the conceptual framework of a limited range of possible left ventricular end-diastolic volumes.

Adv Physiol Educ. 2020-9-1

[3]
Replication of left ventricular haemodynamics with a simple planar mitral valve model.

Biomed Tech (Berl). 2020-10-25

[4]
Fluid-structure interaction modeling in cardiovascular medicine - A systematic review 2017-2019.

Med Eng Phys. 2020-4

[5]
Machine Intelligence in Cardiovascular Medicine.

Cardiol Rev. 2020

[6]
Exploring cardiac form and function: A length-scale computational biology approach.

Wiley Interdiscip Rev Syst Biol Med. 2020-3

[7]
Fully coupled fluid-electro-mechanical model of the human heart for supercomputers.

Int J Numer Method Biomed Eng. 2018-12

[8]
Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations.

Front Physiol. 2018-4-30

[9]
Effects of Reynolds and Womersley Numbers on the Hemodynamics of Intracranial Aneurysms.

Comput Math Methods Med. 2016

[10]
Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.

Biomed Eng Online. 2016-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索