Powell J Elijah, Leonard Sean P, Kwong Waldan K, Engel Philipp, Moran Nancy A
Department of Integrative Biology, University of Texas, Austin, TX 78712.
Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13887-13892. doi: 10.1073/pnas.1610856113. Epub 2016 Nov 14.
Animal guts are often colonized by host-specialized bacterial species to the exclusion of other transient microorganisms, but the genetic basis of colonization ability is largely unknown. The bacterium Snodgrassella alvi is a dominant gut symbiont in honey bees, specialized in colonizing the hindgut epithelium. We developed methods for transposon-based mutagenesis in S. alvi and, using high-throughput DNA sequencing, screened genome-wide transposon insertion (Tn-seq) and transcriptome (RNA-seq) libraries to characterize both the essential genome and the genes facilitating host colonization. Comparison of Tn-seq results from laboratory cultures and from monoinoculated worker bees reveal that 519 of 2,226 protein-coding genes in S. alvi are essential in culture, whereas 399 are not essential but are beneficial for gut colonization. Genes facilitating colonization fall into three broad functional categories: extracellular interactions, metabolism, and stress responses. Extracellular components with strong fitness benefits in vivo include trimeric autotransporter adhesins, O antigens, and type IV pili (T4P). Experiments with T4P mutants establish that T4P in S. alvi likely function in attachment and biofilm formation, with knockouts experiencing a competitive disadvantage in vivo. Metabolic processes promoting colonization include essential amino acid biosynthesis and iron acquisition pathways, implying nutrient scarcity within the hindgut environment. Mechanisms to deal with various stressors, such as for the repair of double-stranded DNA breaks and protein quality control, are also critical in vivo. This genome-wide study identifies numerous genetic networks underlying colonization by a gut commensal in its native host environment, including some known from more targeted studies in other host-microbe symbioses.
动物肠道通常由宿主特异性细菌物种定殖,排斥其他 transient 微生物,但定殖能力的遗传基础很大程度上未知。细菌 Snodgrassella alvi 是蜜蜂肠道中的优势共生菌,专门定殖于后肠上皮。我们开发了基于转座子的 S. alvi 诱变方法,并使用高通量 DNA 测序,筛选全基因组转座子插入(Tn-seq)和转录组(RNA-seq)文库,以表征必需基因组和促进宿主定殖的基因。比较实验室培养物和单接种工蜂的 Tn-seq 结果表明,S. alvi 的 2226 个蛋白质编码基因中有 519 个在培养中是必需的,而 399 个不是必需的,但对肠道定殖有益。促进定殖的基因分为三大功能类别:细胞外相互作用、代谢和应激反应。在体内具有强大适应性益处的细胞外成分包括三聚体自转运粘附素、O 抗原和 IV 型菌毛(T4P)。对 T4P 突变体的实验表明,S. alvi 中的 T4P 可能在附着和生物膜形成中起作用,敲除突变体在体内会经历竞争劣势。促进定殖的代谢过程包括必需氨基酸生物合成和铁获取途径,这意味着后肠环境中营养物质稀缺。应对各种应激源的机制,如双链 DNA 断裂修复和蛋白质质量控制,在体内也很关键。这项全基因组研究确定了肠道共生菌在其天然宿主环境中定殖的众多遗传网络,包括一些在其他宿主-微生物共生关系的更有针对性研究中已知的网络。