Suppr超能文献

用于有机晶体管的本征可拉伸且可自愈的半导体聚合物。

Intrinsically stretchable and healable semiconducting polymer for organic transistors.

作者信息

Oh Jin Young, Rondeau-Gagné Simon, Chiu Yu-Cheng, Chortos Alex, Lissel Franziska, Wang Ging-Ji Nathan, Schroeder Bob C, Kurosawa Tadanori, Lopez Jeffrey, Katsumata Toru, Xu Jie, Zhu Chenxin, Gu Xiaodan, Bae Won-Gyu, Kim Yeongin, Jin Lihua, Chung Jong Won, Tok Jeffrey B-H, Bao Zhenan

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA.

Corporate Research and Development, Performance Materials Technology Center, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan.

出版信息

Nature. 2016 Nov 17;539(7629):411-415. doi: 10.1038/nature20102.

Abstract

Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.

摘要

薄膜场效应晶体管是可穿戴电子产品中可拉伸电子设备的关键元件。此类晶体管的所有材料和组件都需要具备可拉伸性和机械坚固性。尽管近期在可拉伸导体方面取得了进展,但可拉伸半导体的实现主要集中在材料的应变适应工程,或将纳米纤维或纳米线混入弹性体中。另一种方法则依赖于使用本质上可拉伸的半导体,以便能够采用标准加工方法进行制造。当含有改性侧链和分段主链的共轭聚合物注入更具柔性的分子构建单元时,分子的拉伸性可以得到增强。在此,我们提出了一种可拉伸半导体聚合物的设计概念,该概念涉及引入化学基团以促进共轭聚合物的动态非共价交联。这些非共价交联基团在施加应变时能够通过键的断裂经历能量耗散机制,同时保持高电荷传输能力。结果,即使在100%施加应变下经过一百个循环后,我们的聚合物仍能够恢复其高场效应迁移率性能(超过每伏每秒1平方厘米)。由这些材料制成的有机薄膜场效应晶体管表现出高达每伏每秒1.3平方厘米的迁移率以及超过一百万的高开关电流比。在垂直于应变方向上施加100%应变时,场效应迁移率仍高达每伏每秒1.12平方厘米。经过溶剂和热修复处理后,受损器件的场效应迁移率几乎可以完全恢复。最后,我们成功制造出一种受皮肤启发的可拉伸有机晶体管,该晶体管在可穿戴设备中预期的变形条件下仍能工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验