Suppr超能文献

形态/纳米结构控制实现本征可拉伸有机电子学。

Morphological/nanostructural control toward intrinsically stretchable organic electronics.

机构信息

Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, California 90095, USA.

出版信息

Chem Soc Rev. 2019 Mar 18;48(6):1741-1786. doi: 10.1039/c8cs00834e. Epub 2019 Jan 2.

Abstract

The development of intrinsically stretchable electronics poses great challenges in synthesizing elastomeric conductors, semiconductors and dielectric materials. While a wide range of approaches, from special macrostructural engineering to molecular synthesis, have been employed to afford stretchable devices, this review surveys recent advancements in employing various morphological and nanostructural control methods to impart mechanical flexibility and/or to enhance electrical properties. The focus will be on (1) embedding percolation networks of one-dimensional conductive materials such as metallic nanowires and carbon nanotubes in an elastomer matrix to accommodate large external deformation without imposing a large strain along the one-dimensional materials, (2) design strategies to achieve intrinsically stretchable semiconductor materials that include direct blending of semiconductors with elastomers and synthesizing semiconductor polymers with appropriate side chains, backbones, cross-linking networks, and flexible blocks, and (3) employing interpenetrating polymer networks, bottlebrush structures and introducing inclusions in stretchable polymeric dielectric materials to improve electrical performance. Moreover, intrinsically stretchable electronic devices based on these materials, such as stretchable sensors, heaters, artificial muscles, optoelectronic devices, transistors and soft humanoid robots, will also be described. Limitations of these approaches and measures to overcome them will also be discussed.

摘要

本研究综述了利用各种形态和纳米结构控制方法赋予机械柔韧性和/或增强电性能的最新进展。重点介绍了以下几个方面:(1) 将一维导电材料(如金属纳米线和碳纳米管)的渗流网络嵌入弹性体基质中,以在不沿一维材料施加大应变的情况下容纳大的外部变形;(2) 实现具有内在可拉伸性的半导体材料的设计策略,包括将半导体与弹性体直接混合以及合成具有适当侧链、主链、交联网络和柔性块的半导体聚合物;(3) 在可拉伸聚合物介电材料中采用互穿聚合物网络、刷状结构和引入夹杂来提高电性能。此外,还描述了基于这些材料的具有内在可拉伸性的电子设备,如可拉伸传感器、加热器、人造肌肉、光电设备、晶体管和软人形机器人。还讨论了这些方法的局限性以及克服这些局限性的措施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验