Suppr超能文献

多物种占有模型的模型选择与评估。

Model selection and assessment for multi-species occupancy models.

机构信息

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.

Colorado Cooperative Fish and Wildlife Unit, U.S. Geological Survey, Fort Collins, Colorado, 80523, USA.

出版信息

Ecology. 2016 Jul;97(7):1759-1770. doi: 10.1890/15-1471.1.

Abstract

While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.

摘要

虽然多物种占有模型(MSOM)作为一种分析生物多样性数据的流行方法正在出现,但针对此类模型的正式检查和验证方法却一直滞后。随着生态学家对 MSOM 的应用不断增加,贝叶斯统计学也在悄然发生转变,预测模型比较方法正在复兴。与使用综合似然的单物种占有模型不同,MSOM 通常采用贝叶斯框架,并包含多个层次。在这种情况下,标准的模型检查和选择方法通常不可靠,而且针对此类模型的生态文献中只有有限的指导。我们研究了几种不同的当代贝叶斯层次方法来检查和验证 MSOM,并将这些方法应用于美国科罗拉多州的淡水水生研究系统,以更好地了解平原鱼类的多样性和分布。我们的研究结果表明,模型选择方法之间存在明显差异,交叉验证技术在预测方面表现最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验