Suppr超能文献

使用改进的不均匀磁化传递(ihMT)序列测量新的对比源——偶极弛豫时间 T 的体内测量。

In vivo measurement of a new source of contrast, the dipolar relaxation time, T , using a modified inhomogeneous magnetization transfer (ihMT) sequence.

机构信息

Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

Aix Marseille Université, CNRS, CRMBM-CEMEREM, UMR 7339, Marseille, France.

出版信息

Magn Reson Med. 2017 Oct;78(4):1362-1372. doi: 10.1002/mrm.26523. Epub 2016 Nov 17.

Abstract

PURPOSE

This paper describes a technique that can be used in vivo to measure the dipolar relaxation time, T , of macromolecular protons contributing to magnetization transfer (MT) in tissues and to produce quantitative T maps.

THEORY AND METHODS

The technique builds upon the inhomogeneous MT (ihMT) technique that is particularly sensitive to tissue components with long T . A standard ihMT experiment was altered to introduce a variable time for switching between positive and negative offset frequencies for RF saturation. A model for the dependence of ihMT was developed and used to fit data acquired in vivo.

RESULTS

Application of the method to images from brains of healthy volunteers produced values of T  = (5.9 ± 1.2) ms in gray matter and T  = (6.2 ± 0.4) ms in white matter regions and provided maps of the T parameter.

CONCLUSION

The model and experiments described provide access to a new relaxation characteristic of tissue with potentially unique diagnostic information. Magn Reson Med 78:1362-1372, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

本文描述了一种可在体测量对磁化转移(MT)有贡献的大分子质子的偶极弛豫时间 T 的技术,并生成定量 T 图。

理论和方法

该技术基于对 T 较长的组织成分特别敏感的不均匀 MT(ihMT)技术。对标准 ihMT 实验进行了修改,引入了在正、负偏移频率之间切换的可变时间以进行 RF 饱和。建立了 ihMT 的依赖模型,并用于拟合体内采集的数据。

结果

将该方法应用于健康志愿者大脑的图像中,在灰质中得到 T  = (5.9 ± 1.2) ms,在白质中得到 T  = (6.2 ± 0.4) ms,并提供了 T 参数图。

结论

本文描述的模型和实验提供了一种新的组织弛豫特性,具有潜在的独特诊断信息。磁共振医学 78:1362-1372, 2017。© 2016 国际磁共振学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验