Suppr超能文献

隐花色素协调植物中不同蓝光反应的转录调控。

Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants.

机构信息

Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.

College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.

出版信息

Photochem Photobiol. 2017 Jan;93(1):112-127. doi: 10.1111/php.12663. Epub 2017 Jan 27.

Abstract

Blue light affects many aspects of plant growth and development throughout the plant lifecycle. Plant cryptochromes (CRYs) are UV-A/blue light photoreceptors that play pivotal roles in regulating blue light-mediated physiological responses via the regulated expression of more than one thousand genes. Photoactivated CRYs regulate transcription via two distinct mechanisms: indirect promotion of the activity of transcription factors by inactivation of the COP1/SPA E3 ligase complex or direct activation or inactivation of at least two sets of basic helix-loop-helix transcription factor families by physical interaction. Hence, CRYs govern intricate mechanisms that modulate activities of transcription factors to regulate multiple aspects of blue light-responsive photomorphogenesis. Here, we review recent progress in dissecting the pathways of CRY signaling and discuss accumulating evidence that shows how CRYs regulate broad physiological responses to blue light.

摘要

蓝光会影响植物生命周期中的许多生长和发育方面。植物隐花色素(CRYs)是 UV-A/蓝光光受体,通过调控超过一千个基因的表达,在调控蓝光介导的生理反应方面发挥着关键作用。光激活的 CRYs 通过两种不同的机制来调节转录:通过失活 COP1/SPA E3 连接酶复合物间接促进转录因子的活性,或通过物理相互作用直接激活或失活至少两组碱性螺旋-环-螺旋转录因子家族。因此,CRYs 控制着调节转录因子活性以调节蓝光响应光形态建成的多个方面的复杂机制。在这里,我们回顾了解析 CRY 信号通路的最新进展,并讨论了越来越多的证据,这些证据表明 CRYs 如何调节对蓝光的广泛生理反应。

相似文献

1
Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants.
Photochem Photobiol. 2017 Jan;93(1):112-127. doi: 10.1111/php.12663. Epub 2017 Jan 27.
4
Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
J Plant Res. 2016 Mar;129(2):137-48. doi: 10.1007/s10265-015-0782-z. Epub 2016 Jan 25.
5
Beyond the photocycle-how cryptochromes regulate photoresponses in plants?
Curr Opin Plant Biol. 2018 Oct;45(Pt A):120-126. doi: 10.1016/j.pbi.2018.05.014. Epub 2018 Jun 15.
6
The action mechanisms of plant cryptochromes.
Trends Plant Sci. 2011 Dec;16(12):684-91. doi: 10.1016/j.tplants.2011.09.002. Epub 2011 Oct 7.
7
ADA2b acts to positively regulate blue light-mediated photomorphogenesis in Arabidopsis.
Biochem Biophys Res Commun. 2024 Jul 12;717:150050. doi: 10.1016/j.bbrc.2024.150050. Epub 2024 May 4.
8
Signaling Mechanisms by Arabidopsis Cryptochromes.
Front Plant Sci. 2022 Feb 28;13:844714. doi: 10.3389/fpls.2022.844714. eCollection 2022.
9
Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17582-7. doi: 10.1073/pnas.1308987110. Epub 2013 Oct 7.
10
Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism.
Genes Dev. 2011 May 15;25(10):1023-8. doi: 10.1101/gad.2025111. Epub 2011 Apr 21.

引用本文的文献

2
Complex Signaling Networks Underlying Blue-Light-Mediated Floral Transition in Plants.
Plants (Basel). 2025 May 20;14(10):1533. doi: 10.3390/plants14101533.
3
CRY1-GAIP1 complex mediates blue light to hinder the repression of PIF5 on AGL5 to promote carotenoid biosynthesis in mango fruit.
Plant Biotechnol J. 2025 Jul;23(7):2769-2789. doi: 10.1111/pbi.70100. Epub 2025 Apr 22.
4
Erwin Bünning and Wolfgang Engelmann: establishing the involvement of the circadian clock in photoperiodism.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):481-493. doi: 10.1007/s00359-024-01704-7. Epub 2024 May 28.
5
Hypomagnetic Conditions and Their Biological Action (Review).
Biology (Basel). 2023 Dec 11;12(12):1513. doi: 10.3390/biology12121513.
6
The blue light signal transduction module FaCRY1-FaCOP1-FaHY5 regulates anthocyanin accumulation in cultivated strawberry.
Front Plant Sci. 2023 Jun 9;14:1144273. doi: 10.3389/fpls.2023.1144273. eCollection 2023.
10
Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants.
Front Plant Sci. 2023 Feb 14;14:1145609. doi: 10.3389/fpls.2023.1145609. eCollection 2023.

本文引用的文献

1
Photoactivation and inactivation of Arabidopsis cryptochrome 2.
Science. 2016 Oct 21;354(6310):343-347. doi: 10.1126/science.aaf9030.
2
Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort Marchantia polymorpha.
Plant Cell. 2016 Jun;28(6):1406-21. doi: 10.1105/tpc.15.01063. Epub 2016 Jun 1.
4
Photoreceptor crosstalk in shade avoidance.
Curr Opin Plant Biol. 2016 Oct;33:1-7. doi: 10.1016/j.pbi.2016.03.008. Epub 2016 Apr 6.
5
Pivotal Roles of the Phytochrome-Interacting Factors in Cryptochrome Signaling.
Mol Plant. 2016 Apr 4;9(4):496-7. doi: 10.1016/j.molp.2016.02.007. Epub 2016 Feb 24.
6
Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
J Plant Res. 2016 Mar;129(2):137-48. doi: 10.1007/s10265-015-0782-z. Epub 2016 Jan 25.
7
Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light.
Cell. 2016 Jan 14;164(1-2):233-245. doi: 10.1016/j.cell.2015.12.018. Epub 2015 Dec 24.
8
Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):224-9. doi: 10.1073/pnas.1511437113. Epub 2015 Dec 22.
9
Photoreceptor Specificity in the Light-Induced and COP1-Mediated Rapid Degradation of the Repressor of Photomorphogenesis SPA2 in Arabidopsis.
PLoS Genet. 2015 Sep 14;11(9):e1005516. doi: 10.1371/journal.pgen.1005516. eCollection 2015 Sep.
10
Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9135-40. doi: 10.1073/pnas.1504404112. Epub 2015 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验