Suppr超能文献

在香烟烟雾诱导的慢性阻塞性肺疾病小鼠模型中,肋间和足部骨骼肌纤维中的钙信号传导受损。

Impaired calcium signaling in muscle fibers from intercostal and foot skeletal muscle in a cigarette smoke-induced mouse model of COPD.

作者信息

Robison Patrick, Sussan Thomas E, Chen Hegang, Biswal Shyam, Schneider Martin F, Hernández-Ochoa Erick O

机构信息

Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, Maryland, 21201, USA.

Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Muscle Nerve. 2017 Aug;56(2):282-291. doi: 10.1002/mus.25466. Epub 2017 Feb 13.

Abstract

INTRODUCTION

Respiratory and locomotor skeletal muscle dysfunction are common findings in chronic obstructive pulmonary disease (COPD); however, the mechanisms that cause muscle impairment in COPD are unclear. Because Ca signaling in excitation-contraction (E-C) coupling is important for muscle activity, we hypothesized that Ca dysregulation could contribute to muscle dysfunction in COPD.

METHODS

Intercostal and flexor digitorum brevis muscles from control and cigarette smoke-exposed mice were investigated. We used single cell Ca imaging and Western blot assays to assess Ca signals and E-C coupling proteins.

RESULTS

We found impaired Ca signals in muscle fibers from both muscle types, without significant changes in releasable Ca or in the expression levels of E-C coupling proteins.

CONCLUSIONS

Ca dysregulation may contribute or accompany respiratory and locomotor muscle dysfunction in COPD. These findings are of significance to the understanding of the pathophysiological course of COPD in respiratory and locomotor muscles. Muscle Nerve 56: 282-291, 2017.

摘要

引言

呼吸和运动骨骼肌功能障碍是慢性阻塞性肺疾病(COPD)的常见表现;然而,COPD中导致肌肉损伤的机制尚不清楚。由于兴奋-收缩(E-C)偶联中的钙信号对肌肉活动很重要,我们推测钙调节异常可能导致COPD中的肌肉功能障碍。

方法

研究了来自对照小鼠和暴露于香烟烟雾的小鼠的肋间肌和趾短屈肌。我们使用单细胞钙成像和蛋白质印迹分析来评估钙信号和E-C偶联蛋白。

结果

我们发现两种肌肉类型的肌纤维中钙信号均受损,可释放钙或E-C偶联蛋白的表达水平无显著变化。

结论

钙调节异常可能导致或伴随COPD中的呼吸和运动肌肉功能障碍。这些发现对于理解COPD在呼吸和运动肌肉中的病理生理过程具有重要意义。《肌肉与神经》56: 282 - 291, 2017年。

相似文献

2
Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1.
Am J Physiol Cell Physiol. 2011 May;300(5):C998-C1012. doi: 10.1152/ajpcell.00370.2010. Epub 2011 Feb 2.
3
S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle.
Am J Physiol Cell Physiol. 2010 Nov;299(5):C891-902. doi: 10.1152/ajpcell.00180.2010. Epub 2010 Aug 4.
4
Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.
J Gen Physiol. 2015 Jul;146(1):97-108. doi: 10.1085/jgp.201411314. Epub 2015 Jun 15.
5
Attenuated Ca(2+) release in a mouse model of limb girdle muscular dystrophy 2A.
Skelet Muscle. 2016 Feb 24;6:11. doi: 10.1186/s13395-016-0081-y. eCollection 2016.
6
Alterations in skeletal muscle cell homeostasis in a mouse model of cigarette smoke exposure.
PLoS One. 2013 Jun 14;8(6):e66433. doi: 10.1371/journal.pone.0066433. Print 2013.
8
External Ca(2+)-dependent excitation--contraction coupling in a population of ageing mouse skeletal muscle fibres.
J Physiol. 2004 Oct 1;560(Pt 1):137-55. doi: 10.1113/jphysiol.2004.067322. Epub 2004 Aug 5.
10
Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14158-63. doi: 10.1073/pnas.1211314109. Epub 2012 Aug 13.

引用本文的文献

2
Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia.
Front Nutr. 2023 Aug 8;10:1214684. doi: 10.3389/fnut.2023.1214684. eCollection 2023.
3
Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting.
Int J Mol Sci. 2023 Mar 29;24(7):6454. doi: 10.3390/ijms24076454.
4
Contribution of skeletal muscle-specific microRNA-133b to insulin resistance in heart failure.
Am J Physiol Heart Circ Physiol. 2023 May 1;324(5):H598-H609. doi: 10.1152/ajpheart.00250.2022. Epub 2023 Feb 24.

本文引用的文献

1
Unravelling the mechanisms regulating muscle mitochondrial biogenesis.
Biochem J. 2016 Aug 1;473(15):2295-314. doi: 10.1042/BCJ20160009.
2
Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy.
Cell Calcium. 2016 Aug;60(2):74-87. doi: 10.1016/j.ceca.2016.04.005. Epub 2016 Apr 20.
3
Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings.
J Thorac Dis. 2015 Oct;7(10):E418-38. doi: 10.3978/j.issn.2072-1439.2015.08.04.
4
Balance recovery is compromised and trunk muscle activity is increased in chronic obstructive pulmonary disease.
Gait Posture. 2016 Jan;43:101-7. doi: 10.1016/j.gaitpost.2015.09.004. Epub 2015 Sep 11.
5
Interaction between Physical Activity and Smoking on Lung, Muscle, and Bone in Mice.
Am J Respir Cell Mol Biol. 2016 May;54(5):674-82. doi: 10.1165/rcmb.2015-0181OC.
6
Balance impairment and systemic inflammation in chronic obstructive pulmonary disease.
Int J Chron Obstruct Pulmon Dis. 2015 Sep 8;10:1847-52. doi: 10.2147/COPD.S89814. eCollection 2015.
7
Why and How Limb Muscle Mass and Function Should Be Measured in Patients with Chronic Obstructive Pulmonary Disease.
Ann Am Thorac Soc. 2015 Sep;12(9):1269-77. doi: 10.1513/AnnalsATS.201505-278PS.
9
Preclinical murine models of Chronic Obstructive Pulmonary Disease.
Eur J Pharmacol. 2015 Jul 15;759:265-71. doi: 10.1016/j.ejphar.2015.03.029. Epub 2015 Mar 24.
10
Fear of falling in people with chronic obstructive pulmonary disease.
Respir Med. 2015 Apr;109(4):483-9. doi: 10.1016/j.rmed.2015.02.003. Epub 2015 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验