Suppr超能文献

肌营养不良蛋白缺陷小鼠畸形肌纤维中动作电位和钙信号特性的破坏

Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice.

作者信息

Hernández-Ochoa Erick O, Pratt Stephen J P, Garcia-Pelagio Karla P, Schneider Martin F, Lovering Richard M

机构信息

Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.

Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland.

出版信息

Physiol Rep. 2015 Apr;3(4). doi: 10.14814/phy2.12366.

Abstract

Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca(2+) transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca(2+) transients, with a further Ca(2+) transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca(2+) signals suggest changes in excitability and remodeling of the global Ca(2+) signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles.

摘要

杜兴氏肌营养不良症(DMD)是最常见且最严重的肌营养不良症,由肌营养不良蛋白缺失引起。肌肉无力和脆弱(即对损伤的易感性增加)可能是由于肌纤维细胞骨架的结构不稳定,但最近的研究表明,营养不良肌肉中畸形/分支肌纤维的增加也可能起作用。我们之前研究了健康野生型(WT)和营养不良(MDX)骨骼肌中的肌纤维形态。在此,我们使用高速共聚焦显微镜和电压敏感指示剂二-8-丁基-氨基-萘基-乙烯-吡啶鎓-丙基-磺酸盐(di-8-ANEPPS)来评估动作电位(AP)特性,从而检测肌纤维兴奋性。我们还使用含罗丹明-2的高速共聚焦显微镜检测AP诱导的Ca(2+)瞬变,并使用弹性测量法评估肌膜脆性。AP记录显示,与WT和MDX的正常肌纤维相比,畸形MDX肌纤维的宽度增加且达到峰值的时间延长,但AP幅度无显著变化。畸形MDX肌纤维还表现出AP诱导的Ca(2+)瞬变减少,在畸形MDX肌纤维的分支中Ca(2+)瞬变进一步减少。力学研究表明,畸形MDX肌纤维的肌膜可变形性和不稳定性增加。数据表明,畸形肌纤维在功能上与形态正常的肌纤维不同。在AP特性和Ca(2+)信号中观察到的差异表明兴奋性发生了变化,并且整体Ca(2+)信号发生了重塑,这两者都可能是营养不良肌肉中报告的无力的基础。肌膜的生物力学变化支持了畸形肌纤维更容易受损的观点。营养不良肌肉中畸形肌纤维的高发生率可能导致营养不良肌肉中逐渐出现的力量丧失和脆弱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验