Alioto Salvatore L, Garabedian Mikael V, Bellavance Danielle R, Goode Bruce L
Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
Curr Biol. 2016 Dec 5;26(23):3230-3237. doi: 10.1016/j.cub.2016.09.053. Epub 2016 Nov 17.
Tropomyosins comprise a large family of actin-binding proteins with critical roles in diverse actin-based processes [1], but our understanding of how they mechanistically contribute to actin filament dynamics has been limited. We addressed this question in S. cerevisiae, where tropomyosins (Tpm1 and Tpm2), profilin (Pfy1), and formins (Bni1 and Bnr1) are required for the assembly of an array of actin cables that facilitate polarized vesicle delivery and daughter cell growth. Formins drive cable formation by promoting actin nucleation and by accelerating actin filament elongation together with profilin [2]. In contrast, how tropomyosins contribute mechanistically to cable formation has been unclear, but genetic studies demonstrate that Tpm1 plays a more important role than Tpm2 [3, 4]. Here, we found that loss of TPM1 in strains lacking BNR1, but not BNI1, leads to severe defects in cable formation, polarized secretion, and cell growth, suggesting that TPM1 function is required for proper Bni1-mediated cable assembly. Furthermore, in vitro total internal reflection fluorescence (TIRF) microscopy demonstrated that Tpm1 strongly enhances Bni1-mediated, but not Bnr1-mediated, actin nucleation without affecting filament elongation rate, whereas Tpm2 has no effects on Bni1 or Bnr1. Tpm1 stimulation of Bni1-mediated nucleation also requires profilin and its interactions with both G-actin and formins. Together, these results demonstrate that yeast Tpm1 works in concert with profilin to promote formin-dependent nucleation of actin cables, thus expanding our understanding of how specific tropomyosin isoforms influence actin dynamics.
原肌球蛋白构成了一个庞大的肌动蛋白结合蛋白家族,在多种基于肌动蛋白的过程中发挥关键作用[1],但我们对它们如何在机制上影响肌动蛋白丝动力学的理解一直有限。我们在酿酒酵母中解决了这个问题,在酿酒酵母中,原肌球蛋白(Tpm1和Tpm2)、肌动蛋白单体结合蛋白(Pfy1)和成肌蛋白(Bni1和Bnr1)是一系列肌动蛋白电缆组装所必需的,这些电缆有助于极化囊泡运输和子细胞生长。成肌蛋白通过促进肌动蛋白成核以及与肌动蛋白单体结合蛋白一起加速肌动蛋白丝伸长来驱动电缆形成[2]。相比之下,原肌球蛋白如何在机制上促进电缆形成尚不清楚,但遗传学研究表明Tpm1比Tpm2发挥更重要的作用[3,4]。在这里,我们发现,在缺乏BNR1而非BNI1的菌株中TPM1缺失会导致电缆形成、极化分泌和细胞生长出现严重缺陷,这表明TPM1功能是Bni1介导的正常电缆组装所必需的。此外,体外全内反射荧光(TIRF)显微镜显示,Tpm1强烈增强Bni1介导的而非Bnr1介导的肌动蛋白成核,而不影响丝伸长率,而Tpm2对Bni1或Bnr1没有影响。Tpm1对Bni1介导的成核的刺激也需要肌动蛋白单体结合蛋白及其与G-肌动蛋白和成肌蛋白的相互作用。总之,这些结果表明酵母Tpm1与肌动蛋白单体结合蛋白协同作用,促进成肌蛋白依赖性的肌动蛋白电缆成核,从而扩展了我们对特定原肌球蛋白异构体如何影响肌动蛋白动力学的理解。