Stavros E Natasha, Tane Zachary, Kane Van R, Veraverbeke Sander, McGaughey Robert J, Lutz James A, Ramirez Carlos, Schimel David
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 233-300, Pasadena, California, 91109, USA.
Department of Geography, University of California, Santa Barbara, 1832 Ellison Hall, Santa Barbara, California, 93106-4060, USA.
Ecology. 2016 Nov;97(11):3244. doi: 10.1002/ecy.1577.
Megafires have lasting social, ecological, and economic impacts and are increasing in the western contiguous United States. Because of their infrequent nature, there is a limited sample of megafires to investigate their unique behavior, drivers, and relationship to forest management practices. One approach is to characterize critical information pre-, during, and post-fire using remote sensing. In August 2013, the Rim Fire burned 104,131 ha and in September 2014, the King Fire burned 39,545 ha. Both fires occurred in California's Sierra Nevada. The areas burned by these fires were fortuitously surveyed by airborne campaigns, which provided the most recent remote sensing technologies not currently available from satellite. Technologies include an imaging spectrometer spanning the visible to shortwave infrared (0.38-2.5 μm), a multispectral, high-spatial resolution thermal infrared (3.5-13 μm) spectroradiometer, and Light Detection and Ranging that provide spatial resolutions of pixels from 1 × 1 m to 35 × 35 m. Because of the unique information inherently derived from these technologies before the fires, the areas were subsequently surveyed after the fires. We processed and provide free dissemination of these airborne datasets as products of surface reflectance, spectral metrics and forest structural metrics ( http://dx.doi.org/10.3334/ORNLDAAC/1288). These data products provide a unique opportunity to study relationships among and between remote sensing observations and fuel and fire characteristics (e.g., fuel type, condition, structure, and fire severity). The novelty of these data is not only in the unprecedented types of information available from them before, during, and after two megafires, but also in the synergistic use of multiple state of the art technologies for characterizing the environment. The synergy of these data can provide novel information that can improve maps of fuel type, structure, abundance, and condition that may improve predictions of megafire behavior and effects, thus aiding management before, during, and after such events. Key questions that these data could address include: What drives, extinguishes, and results from megafires? How does megafire behavior relate to fire and fuel management? How does the size and severity of a megafire affect the ecological recovery of the system?
特大火灾具有持久的社会、生态和经济影响,且在美国西部毗邻地区呈增加趋势。由于其发生频率较低,可供研究其独特行为、驱动因素以及与森林管理实践关系的特大火灾样本有限。一种方法是利用遥感技术来描述火灾前、火灾期间和火灾后的关键信息。2013年8月,里姆火焚毁了104131公顷土地,2014年9月,金火焚毁了39545公顷土地。两场火灾均发生在加利福尼亚州的内华达山脉。这些火灾烧毁的区域有幸通过航空勘测进行了调查,航空勘测提供了目前卫星所没有的最新遥感技术。这些技术包括一台覆盖可见光到短波红外(0.38 - 2.5微米)的成像光谱仪、一台多光谱、高空间分辨率的热红外(3.5 - 13微米)光谱辐射计以及光探测与测距技术,它们提供的像素空间分辨率从1×1米到35×35米不等。由于这些技术在火灾发生前就能天然获取独特信息,所以在火灾发生后对这些区域进行了后续勘测。我们对这些航空数据集进行了处理,并作为地表反射率、光谱指标和森林结构指标的产品免费发布(http://dx.doi.org/10.3334/ORNLDAAC/1288)。这些数据产品为研究遥感观测与燃料及火灾特征(如燃料类型、状况、结构和火灾严重程度)之间的关系提供了独特机会。这些数据的新颖之处不仅在于它们在两场特大火灾前、火灾期间和火灾后提供了前所未有的信息类型,还在于协同使用多种先进技术来描述环境。这些数据的协同作用可以提供新的信息,从而改进燃料类型、结构、丰度和状况的地图,这可能会改善对特大火灾行为和影响的预测,进而在这类事件发生前、发生期间和发生后帮助进行管理。这些数据能够解决的关键问题包括:是什么驱动、扑灭了特大火灾以及特大火灾会带来什么后果?特大火灾行为与火灾和燃料管理有怎样的关系?特大火灾的规模和严重程度如何影响系统的生态恢复?